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Abstract 

This paper presents a method for estimating the spectra of water wave disturbances on 
five of the six axes of a stationary, slender body underwater vehicle in an inertia dominated wave 
force regime, both in head seas and in beam seas. Inertia dominated wave forces are typical of 
those encountered by a 21 inch diameter, torpedo shaped underwater vehicle operating in coastal 
waters and sea state 2. Strip theory is used to develop transfer function phase and magnitude 
between surface water waves and the slender body pitch, heave, and surge forces and moment for 
the vehicle in head seas, and for pitch, heave, yaw, and sway forces and moments in beam seas. 
Experiments are conducted which verify this method of transfer function calculation, and 
demonstrate the effects of vehicle forward motion in the head seas case. Using known sea spectra 
and linear time invariant systems theory allows for estimation of the water wave disturbance 
spectra for these forces and moments. 

Application of sliding control techniques are then developed for the underwater vehicle 
longitudinal plane equations of motion. Computer simulations are used to demonstrate the 
dependence of underwater vehicle depth control upon the pitch control, and adaptive pitch control 
is shown to provide good performance in the presence of substantial parametric uncertainty. 
Pitch disturbance rejection properties of variations of the sliding controller are investigated. Both 
single frequency and stochastic disturbances are used, and the stochastic disturbance is developed 
using the results of the earlier investigation. 
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Chapter 1     INTRODUCTION 

1.1 Motivation 

Autonomous Underwater Vehicles (AUVs) have become increasingly useful tools in the 

exploration of the ocean depths, where the effects of surface waves are far removed from the 

operating region of the vehicle. As the range of missions for AUVs expands, so does the need to 

understand the disturbances which the vehicle will encounter in its enlarged theater of operation. 

While deep underwater, ocean currents may be the source of the predominant disturbance to the 

untethered AUV, the effect of gravity water waves becomes important when operating an AUV 

near the water's surface. 

The Naval Undersea Warfare Center (NUWC) Division, Newport, Rhode Island, is 

currently developing an autonomous, 21 inch diameter "torpedo shaped" AUV, known as the 

21UUV, for which near surface operations is envisioned in the future. The 21UUV shape, in the 

expected 301 inch long version, is shown in figure 1.1. 

The Deep Submergence Laboratory at the Woods Hole Oceanographic Institution is 

involved in the research and development of the control algorithms for the vehicle, and an 

understanding of the expected environmental disturbances to the AUV will allow a more thorough 

evaluation of the effectiveness of the developed controllers. Also, future decisions concerning 

possible operating regions of the 21UUV must account for water surface conditions and the effect 

of waves when near surface missions are considered. 
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301   in 

20.94   in 

Figure 1.1 21UUV Profile 

1.2 Research Objectives 

In severe sea conditions, the destabilizing effect of surface waves on an AUV is expected 

to be the limiting factor when considering the upper boundary of useful operating depths 

available to the underwater vehicle. For example, with surface waves in deep water, one would 

expect the amplitude of water motion, and hence the effect of wave forces, to decay with 

increasing depth. Because there is a limit in its ability to stabilize itself, an AUV would have a 

ceiling to its effective operating regime. Therefore, one reasonable measure of an AUV controller 

is its performance in the presence of wave disturbances. 

Before the disturbance rejection properties of any controller can be evaluated, the 

properties of the disturbance must be determined. Because the 21UUV shape is relatively simple, 

existing literature concerning the hydrodynamic forces on similar shaped bodies, i.e. cylinders, is 

abundant. Therefore the first objective of this thesis is to apply existing theory to develop a 

model for predicting the forces and moments caused by sea waves on a stationary, slender body 

AUV. Linear wave theory, hydrodynamic strip theory accounting for the precise contour of the 

21UUV, and the stochastic description of the sea surface are to be used. 
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With any model, simplifications of the true physical processes result in model 

inaccuracies. While full scale testing of the yet to be built 21UUV is beyond the scope of this 

thesis, scale model testing in a wave tank is possible. Therefore, the second research objective is 

to conduct tests which either confirm the validity of the wave force and moment model, or 

provide empirical data which allows for the estimation of the hydrodynamic forces and moments 

on the AUV. 

While a precursor of the 21UUV is currently undergoing sea trials which, in part, are 

being used to evaluate controller performance in still water and in steady currents, the testing of 

this vehicle in other than calm sea conditions is a future prospect. Hence, the third research 

objective is to develop a controller for the 21UUV using the same methodology as is expected to 

be used for the actual 21UUV controller, and by simulation, to evaluate the controller's 

performance in the presence of wave disturbances similar to that which might be encountered in 

practice. For simplification purposes, motion in the AUV's longitudinal plane alone is 

considered. 

1.3 Outline of Thesis 

Chapter 2 develops theory allowing for the estimation of wave disturbances on a 

stationary slender body AUV beneath the water's surface. Slender body strip theory and linear 

wave theory are used to develop a method for calculating the transfer function phase and 

magnitude between surface water waves and five of the six forces and moments expected for the 

submerged AUV, both in head and in beam seas. A spectral description of random water waves 

is presented, and using linear time invariant systems theory, a method for calculating the spectra 

of the wave disturbance is shown. Generating a time simulation of waves from their spectral 

representation is addressed. 
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Chapter 3 contains a description of the experimental testing performed on a scale model 

of the 21UUV to evaluate the transfer function representation of wave forces and moments 

presented in chapter 2. The experimental apparatus is detailed, as are the series of tests 

performed. Experimental data is compared to theoretical values and largely verifies the earlier 

developed theory. The effect on transfer function magnitude of vehicle forward motion in head 

seas is also investigated. Differences and similarities between the static and dynamic model cases 

are noted. 

Chapter 4 details the general six degree of freedom equations of motion for an 

underwater vehicle. Model simplifications are made accounting for 21UUV body symmetry and 

assumptions concerning maintenance of the vehicle roll angle at 0 degrees. The resulting 

longitudinal plane equations used for subsequent discussion are presented. 

Chapter 5 provides a method of applying sliding control techniques to the 21UUV in the 

longitudinal plane. Variations of the sliding controller are applied to the vehicle pitch axis, and 

are demonstrated in simulation as an integrated part of the pitch-depth-speed controller. Pitch 

disturbance rejection properties of the controllers is investigated through time simulations, and 

extensions to an adaptive sliding controller are made in an attempt to improve disturbance 

rejection properties. 

Chapter 6 summarizes the results of the thesis and describes the direction of future 

research. 

16 



Chapter 2    WAVE DISTURBANCE 

The results of linear wave theory provide a first order approximation to the motion of a 

body of water due to surface gravity waves. Some results from the theory are presented here, and 

then are used to develop a model of the stochastic disturbance which could be expected to affect 

an AUV operating near the surface of the ocean, where the wave effects are most prominent. 

This wave disturbance model will be compared to experimental results in a later chapter, and then 

used in AUV dynamic simulations, where the goal will be to reduce the effect of wave 

disturbances through the use of different control schemes. 

2.1 Linear Wave Results 

A more thorough discussion of these results can be found in (Newman 1977), or 

(Faltinsen 1990). 

2.1.1 Regular Waves 

For a single frequency water wave traveling in the direction measured by the angle a 

with respect to the Cartesian coordinate frame positive x direction, the free surface elevation 

above the mean free surface can be described by 

£ = £usin(co?-fcccosa-Äysina) (2.1) 
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where £a represents the surface wave amplitude (half the wave height), co = y- is the circular 

frequency, T is the wave period, t is time, k = -y- is the wave number, and X is wavelength. 

Wave number, k, is related to circular frequency, co, through the dispersion relation 

^-= ktanh kh (2.2) 

where g is the acceleration of gravity, and h is the water depth (from mean free surface to ocean 

floor). 

For a wave traveling from one water depth to another, co remains constant, and the wave 

number, and therefore the wavelength are affected by the change in h. 

Assuming from here on that a = 0, a water particle's vertical motion, of amplitude C,u on 

the surface, decays with depth, z, where z is taken positive down, and is described by 

C = Ca^^sin(co,-A*) (2.3) 

while the water particle's horizontal motion is 

^-^^m^^sim-kx) (2.4) 

The vertical velocity and acceleration fields are 

w = »Cü^lf
Mcos(co/-^) (2.5) 

ö3 = -roCa
£2^r2sin(cof-^) (2.6) 

and the horizontal velocity and acceleration fields are 
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^=M2C£2^f^cos(cof-^) (2.8) 

The dynamic pressure field in the water column is 

Po = pg^^^1sm(m-kx) (2.9) 

where p   is the water density and g is the acceleration of gravity. 

2.1.2 Statistical Description of Waves 

In practice, linear wave theory is used to simulate irregular seas by the superposition of a 

large number of regular waves (Faltinsen 1990). For a long crested, irregular sea with waves 

traveling in the positive x-direction, the sea surface elevation can be described 

N 

£ = X AJ sin(°V _ kjx + ej) (2-! °) 
7=1 

where A;, co^, kj, and e- are the wave amplitude, circular frequency, wave number, and random 

phase of the j-th wave component respectively, and N is the number of wave components used in 

the simulation. The random phase angles are uniformly distributed between 0 and 2% radians, 

and the wave number and circular frequency are related through the dispersion relation. Wave 

amplitude is related to the circular frequency through a single-sided wave amplitude spectrum, 

S+(co), and can be calculated from 

A? = 25+(oo7.)A(D (2.11) 
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Here, Aco is the increment in co used in the discrete approximation of the spectrum S+(oo). In 

implementing equation (2.10), co; is chosen randomly and uniformly in the interval co, to co, + Aco 

= co(+; to avoid the repetition of the expression after 27t/Aco seconds. It follows that the horizontal 

velocity and acceleration fields, and the vertical velocity and acceleration fields can be simulated 

in the same manner, as 

N 

mA     sinh¥    smfrjt-kjX + Ej) (2.12) 
7=1 

N 
töJAj     sinhV    cos(ay-fyc + £y) (2.13) 

7=1 

"     N 
V"1 .    smhk:(-z+h) , 

w = L<°jAj    sinh.,/,    cos(m/ - *;* + e/) (2-14) 
7=1 

Xo  .    sinhifc;(-z+A)    .    , 
~mjAj    sinh^   sin(co/-^ + e.) (2.15) 

respectively, and that the dynamic pressure can be simulated by 

N 
X.    cosh k:(-z+h)   .     . , Aj    Jhkjh    sin(co/-/c;.x + £.) (2.16) 

7=1 

The single-sided spectrum S+(co) is commonly used in Ocean Engineering applications, 

and is defined 

S+(co) = 
± iWrrWe-^dX C0>0 

co<0 
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where 

T^°   :T (2.18) 

= £{C(OCC+t)} 

is the sea surface elevation autocorrelation function. It can be recognized that S+(co) is related to 

the  familiar  definition   of the  power  spectrum,   <E>^ (co)   (the  Fourier  transform   of the 

autocorrelation function) as 

MrOn-(CO) C0>0 
S+((0) = {K   KV (2.19) 

0 co<0 

S+(co) can be calculated in the method described above, that is, by first calculating the 

autocorrelation function of a set of wave data and then computing its Fourier transform. The 

assumption made is that sea waves can be described as a stationary random process over some 

short period of time on the order of a few hours. By curve fitting some function of frequency to 

the resulting empirical data, many oceanographers have compactly described the frequency 

content of their data by an empirical formula representing a continuous wave spectrum (St. Denis 

1969). 

The forms of the function used to curve fit wave record data to describe a spectrum are 

various. Bretschneider is credited with proposing the first easily usable two parameter spectrum 

representing seaways in all states of development (Chryssostomidis 1974). The 15th 

International Towing Tank Conference (ITTC) recommended a spectrum of the Bretschneider 

form as the standard international spectrum when information concerning typical sea spectra for 
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a specific region of the seas is not available.    For seas not limited by fetch, the ITTC 

recommended Bretschneider spectrum has the form 

173 Hi       (-691^ 
S+((ü)=    .    J exp  -r^- (2.20) 

Here, T, is the average wave period, and H± is the significant wave height, defined as the average 

of the highest one third of all the waves (15th ITTC 1978). 

The term "sea state" is commonly used to describe sea surface conditions ranging from 

glassy seas (sea state 0) to those encountered during hurricane conditions (sea state 9). Using 

data published in (Berteaux 1991) relating sea states to the two parameters above, the ITTC 

recommended spectrum for conditions spanning sea states 1 through 3 is depicted in figure 2.1. 

It can be seen that as the sea state becomes rougher, the spectrum becomes more peaked, and the 

modal frequency decreases. Also, the majority of the spectrum power is seen to be in frequencies 

below 3 rad/sec, even for the calmest of seas. 

The ITTC recommended spectrum will be selected as the sample wave spectrum in all 

following discussion and simulations. While this spectrum may not be the best available model 

of the actual wave spectrum for a specific application, it is assumed to be sufficiently 

representative of the developed model wave spectra for the purpose of this discussion. 
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ITTC Recommended Bretschneider Spectrum 

1.5 2 

Frequency (rad/s) 

2.5 3.5 

Figure 2.1 ITTC Spectrum for Seas not Limited by Fetch 
and Conditions Ranging from Sea States 1 to 3 

2.2 Force Predictions 

2.2.1 Load Regimes 

Morison was the first to propose that the horizontal force per unit length on a stationary 

vertical cylinder in waves can be written as 

dF = (pn-^-CMa1 + pj-CDu\u\ dl (2.21) 

where p is the water density, D is the cylinder diameter, / is the cylinder length, a, and u are the 

horizontal acceleration and velocity of the water at the depth of the cylinder section, and CM and 

CD are coefficients which can be determined experimentally (Morison, et al 1950). It is seen that 

this formulation represents two types of forces on a submerged cylinder, the first term 
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representing an inertial force proportional to the acceleration of the water at the depth of interest, 

and a second, nonlinear drag term proportional to sign velocity times square velocity of the water 

at the depth of interest. In practice, CM and CD are dependent on several parameters such as the 

Reynolds and Keulegan Carpenter numbers of the flow, and the surface roughness of the 

cylinder. 

It is therefore possible that in a particular type of flow that either the inertia or drag force 

is predominant. Such is the case for vertical pilings penetrating the water's surface, and it is 

known that the ratios of wavelength and waveheight to cylinder diameter are key parameters in 

predicting the load regime of the waves on the cylinder (Faltinsen 1990). Figure 2.2 depicts these 

load regimes. 

For a stationary object in a simple harmonic oscillating flow, the time varying total force 

can then be expressed as 

FT = FDsm(ot\sm(Ot\ + F,cos(Ot (2.22) 

where FD and F7 represent the maxima of the drag and inertia force components, respectively. It 

can be shown that (Dean and Dalrymple 1984) 

FT   = 

F, 2FD<F, 

F} (2.23) 

AFD 
D      ' 

The significance of equation (2.23) is that the maximum force on the body is not affected 

by additional drag force until the amplitude of the drag is at least one half that of the inertia 

force. For harmonic oscillating flows, such as that caused by regular waves, while even small 

amounts of drag may be important when considering the shape of the load function on a 
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Load Regimes 

Figure 2.2 Load Regimes on a Vertical Cylinder 
(Adapted from (Faltinsen 1990)) 

stationary body, the peak amplitude of the force is only affected when the drag component is 

greater than one half the inertia force. This implies that if the peak of the regular wave force is 

the main concern for a particular submerged body, considering figure 2.2, water particle motion 

with amplitude greater than 0.5 diameters, and perhaps up to 2.5 diameters would produce a peak 

force only as high as the peak force due to the inertia term from equation (2.22). 

The same concepts discussed above will be used to predict the predominant forces on a 

stationary horizontal cylindrical body (the 21UUV) under waves. When waves cause the motion 

of a water particle at an AUV's depth to be of the order of one UUV diameter or less, it is 

expected that the predominant hydrodynamic force on the UUV due to the wave disturbance 

would be inertial in nature. Because an AUV may be deeply submerged, it is not the surface 

wave height to AUV diameter ratio which is of concern, but more appropriately twice the 

amplitude of water particle horizontal or vertical motion at the vehicle depth (which is analogous 
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to wave height) compared to the cylinder diameter. For instance, if yaw moment on the body is 

of concern, horizontal water motion tangent to the longitudinal (x) axis of the AUV should be 

considered as this is the flow which causes the yaw moment. 

While the above analogy is approximate in nature, it provides a means to predict which 

hydrodynamic forces may be of concern when predicting the total load on a cylindrical AUV 

caused by waves. Experimental data will be presented in a later chapter which tests the validity 

of these arguments. 

2.2.2 Inertia Dominated Flow 

Figure 2.3 depicts the axes, force and moment conventions for an AUV used in this and 

subsequent discussions. The body-fixed axes are labeled x, y, and z, with forces X, Y, and Z 

positive in the corresponding positive axis direction, and moments K, M, and N are positive using 

the right hand rule. 

For the long, streamlined body of the 21UUV, strip theory can be used to calculate the 

hydrodynamic forces and moments imposed on the stationary body by water flow perpendicular 

to the longitudinal axis of the body. Considered below are two body-to-wave orientations, both 

for the horizontal vehicle in an inertia dominated wave force regime. Strip theory is first applied 

to estimate the heave force, Z, the pitch moment, M, and the surge force, X, on the vehicle in 

direct head seas, where wave propagation is perpendicular to the AUV longitudinal axis. Then Y 

(sway force), Z, M, and N (yaw moment) are estimated for the vehicle in direct beam seas, i.e., 

when wave propagation is parallel to the vehicle longitudinal axis. 

2.2.2.1 Head Seas 

To better understand what to expect for Z and M on the AUV body under head seas, first 

considered is a right cylinder of constant diameter equal to the maximum diameter of the 21UUV, 
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Figure 2.3 Body-Fixed Axis, Force and Moment Conventions for a UUV 

and of the same length as the vehicle.  Considering the nearly cylindrical shape of the 21 UUV, 

this cylinder model allows for a closed-form solution which roughly approximates the more 

refined solution developed later using numerical methods and taking into account the precise body 

contour of the AUV. 

The vertical force (positive downward) on a stationary horizontal cylinder of length L 

under waves traveling in the negative x direction in an inertia dominated force regime is 

calculated here using strip theory as 

ZH(t) = -j KmOj(x, z, t) dx (2.24) 

where Km =±npD2CM. To determine CM, the Keulegan-Carpenter parameter is considered and 

is found for vertical water motion as 

KCv = WmT/D (2.25) 
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where 

^ = <^^ (2-26) 

is the amplitude of the vertical velocity from equation (2.5), and T is the period of the harmonic 

wave. It is seen that 

KCv = 2nUD (2.27) 

where £m is the maximum vertical displacement of the water particle from its neutral position. It 

is the assumption here that Cm/D, the "displacement" parameter, is 1 or less and that the resultant 

hydrodynamic force is inertia dominated with CM = 2 (Dean and Dalrymple 1984). 

Returning to equation (2.24), vertical water particle acceleration is taken at the centerline 

depth of the cylinder. Using linear wave theory and recalling that the wave is now traveling in the 

negative x direction, a^ (x, z, t) taken from equation (2.6) can be expressed 

ai(x,z,t) = A3(z)sin(kx + (öt) (2.28) 

Then, recalling that the force Z is taken positive down while the wave elevation is taken positive 

up, 

L/2 
ZH(t) = -KMiA3   \sm(kx + (tit)dx 

= -KM3A3 \ sin -^sin(cof) 

-L/2 

2    • 
kM3'"13TSUlT 

and 

2 „;„ kL 

(2.29) 

z
w| = |^3^3isinf| (2.30) 
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Similarly, M about the mid-length position on the same stationary horizontal cylinder 

under the same waves is calculated using strip theory as 

L/2 

MH(t) = KmA3   \xsm(kx + (öt)cLx 
-L/2 (2.31) 

and 

WH = %k(2sin-^-ifcLcos-^) (2.32) 

The surge force, X, can be estimated by calculating the difference in force between the 

back and front ends of the cylinder due to the difference in the undisturbed dynamic pressure: 

XH(t) = -inpgDX^^lsmfcosim) 
(2.33) 

cosh kh      ■""   2 
\y   I _ himon2r   cosh *(-;+/>)   ■    kL\ 

For a given AUV depth in the water column, the above formulation relates wave number, 

k, to the magnitude of Z, M, and X for unit amplitude surface waves. Since wave frequency is 

directly related to wave number by the dispersion relation (equation (2.2)), equations (2.29), 

(2.31), and (2.33) can be used to solve for the magnitude and phase of the transfer function from 

CatoZ, M, andX. 

For a more refined estimate of Z, M and X, the cylinder model of the 21UUV is 

abandoned and the precise body contour of the AUV is accounted for.   Then, from equation 

(2.24), 

1/2 

ZH{t) = -A3 JKm(x)sm(kx + (öt)dx (2.34) 
-L/2 
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where Km(x)-jpnCMD2(x). CM=2 and constant is still assumed, and using numerical 

methods with a look-up table for D(x), the amplitude of ZH can be found for all co and arbitrary 

phase. Similarly, 

1/2 

MH(t) = Ai   \x Km(x)sm(kx + (öt)dx (2.35) 
-LI2 

where the same method can be used to find the amplitude for MH for all co and arbitrary phase. 

Calculating X requires the integration of the dynamic pressure over the vehicle contour at both 

ends, namely 

R R 

XH(t) = 2nj pD(xmil(r))rdr-2Tzj pD(xnoJr))rdr (2.36) 
o o 

As examples of the calculated transfer function magnitudes, figures 2.4, 2.5, and 2.6 

compare predicted |ZA(co)|/|Cfl(CD)|, \MH((0)\/\t^((0^ and |Xff (a>)|/|^((B)| for the 21UUV in head 

seas, 30 meter deep water and at various depths using the two methods described above. 

Figures 2.4, 2.5, and 2.6 show decreased transfer function magnitudes with increased 

depth of the cylinder, as would be expected due to the decay of water motion with depth. Also 

observed in these figures is a shift of the peak of the magnitude of the transfer functions to lower 

frequencies with increased depth of the vehicle. This can be explained by realizing that higher 

frequency waves decay more rapidly with increasing depth in the water column than do lower 

frequency waves. 
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Figure 2.4 Heave Force Transfer Function Magnitude for 21UUV in Head Seas 
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Figure 2.5 Pitch Moment Transfer Function Magnitude for 21UUV in Head Seas 
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Figure 2.6 Surge Force Transfer Function Magnitude for 21UUV in Head Seas 

2.2.2.2 Beam Seas 

In left beam seas, the AUV longitudinal axis is considered to be rotated 90° from the 

incoming wave direction, and referring to figure 2.3, the regular wave propagation direction is 

taken in the positive y direction in the body-fixed coordinate system. Considering the range of 

wavelengths over the range of wave frequencies which are of interest, it is noted that X/D>13 

for all wave frequencies below 3 rad/sec, and the approximation of uniform water acceleration 

across the diameter of the AUV is made. Strip theory then allows for the calculation of Y, Z, M, 

and N for the AUV in beam seas, while the roll moment, K, though expected to be of 

significance, cannot be reasonably calculated in this manner. Experimental methods best allow 

for determination of K in beam seas, and these will be explored in a later chapter. 

Because Y and N are caused by horizontal water motion, the Keulegan-Carpenter 

number considered is that in the horizontal plane, namely 
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KCh = 2%\jD (2.37) 

where 

c     _f   coshk(-z+h) ,ry OQ-. 
Sm _Sü      sinhiA (Z.JÖJ 

Here the horizontal displacement parameter t,m/D<\ resulting in inertia dominated 

hydrodynamic forces and CM = 2 is assumed. 

Where the previously used cylinder model of the 21UUV can be used to calculate Y and 

Z, using this approach to calculate M and N would predict zero moment about the mid length 

position of the AUV, and therefore only the body contour method is used to calculate M and N in 

beam seas. 

Using the two methods previously described, 

YB(t) = A2KM2Lcos(Ot (2.39) 

using the cylinder model of the body, or 

L/2 

YB(t) = A2cos(Ot JKm(x)dx (2.40) 
-L/2 

using the body contour of the vehicle to calculate KM2(x). Here A2 = A, and is taken from 

equation (2.8), KM2 = Km, and Km(x) = Km(x) due to the symmetry of the vehicle. Similarly, 

Z is calculated 

ZB(t) = -A3KmLsm(üt (2.41) 
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or 

L/2 

ZßO) = -A,sincor \Km{x)dx (2.42) 
-L/2 

for the cylinder model and body contour model, respectively. 

The moments M and N are found from 

L/2 

MB{t) = Aismm  \xKm{x)dx (2.43) 
-L/2 

and 

NB 

L/2 

(t) = A2cos(Ot  \x KM2(x)dx (2.44) 
-L/2 

respectively. 

Figures 2.7 through 2.10 show examples of the calculated transfer function magnitudes 

for |yB((o)|/|Ca(co)|, |ZB((ö)|/|Ca(co)|, |Mß((ö)|/|£ü(co)|, and |jVB(co)|/|Ca(cü)|, respectively for the 

21UUV in beam seas, 30 meter deep water and at various depths using the methods described 

above. Comparing figures 2.7 and 2.8, the transfer function magnitudes are identical for the Y 

and Z forces except at low frequencies where, because of the larger wavelength to water depth 

ratio, the water particle motion decays more rapidly with depth for the vertical motion than for 

horizontal water particle motion. The same can be said when comparing the M and N moments 

in figures 2.9 and 2.10. Because there is little fore-aft asymmetry in the 21UUV, the predicted 

pitch and yaw moments in beam seas are seen to be relatively small compared to the predicted 

pitch moment in head seas (figure 2.5). Finally, comparing ZH in head seas versus ZB in beam 

seas (figures 2.4 and 2.8), it is observed that at low frequencies, the magnitudes of the transfer 
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functions are identical. At higher frequencies where the wavelength is shorter and of the order of 

the vehicle length, |Z# |/|£a| is predictably smaller than |ZB|/|£a|. 

The application of strip theory in calculating forces and moments on an AUV in head and 

beam seas in an inertia dominated hydrodynamic force regime has allowed for the prediction of 

the transfer function from surface wave amplitude to forces and moments on the AUV. The 

standing assumption has been that water particle motion at the depth of the AUV is small enough 

so that nonlinear hydrodynamic form drag is insignificant when compared to the linear 

hydrodynamic inertia forces. 
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Figure 2.7 Sway Force Transfer Function Magnitude for 21UUV in Beam Seas 
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Figure 2.8 Heave Force Transfer Function Magnitude for 21UUV in Beam Seas 
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Figure 2.9 Pitch Moment Transfer Function Magnitude for 21UUV in Beam Seas 
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Figure 2.10 Yaw Moment Transfer Function Magnitude for 21UUV in Beam Seas 
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2.2.3 LTI Systems with Stochastic Inputs 

Figure 2.11 depicts a linear time invariant (LTI) system with stable, proper transfer 

function G(s), input u(s), and output y(s), where s = (-^) is the Laplace operator. 

u(s) I     ~      |  y(s) . 

Figure 2.11 LTI System 

Such systems have long been studied, and presented below is a well-known result which will be 

used in later discussions. For a thorough treatment of the subject of LTI systems with stochastic 

inputs, the reader can consult (Papoulis 1984), wherein the proof of the following result is 

contained. 

For the system in figure 2.11, if u(t) is a known input, and G(t), the impulse response of 

the transfer function G(s) is known, then y(t) is known and can be expressed 

y(t) = y(0) + ju(t)G(t-t)dt (2.45) 
o 

Considering the case when u(t) is a stationary, random process with known power 

spectrum, then y(t) is also a stationary, random process. The power spectrum of y(t) can be 

calculated as 

Oyco) = |GO-co)|2<J>ul((co) (2.46) 
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where JG(j'co)| is the magnitude of the transfer function G(s) evaluated at s = jco. It follows then, 

that the single-sided spectrum of y(t), from equation (2.19) is 

|iOvv(co CD>0 
S;,(co)=        yy (2 Al) 

yy 0 co<0 

The significance of the above result is that the previous discussion relating surface wave 

action to forces and moments on an AUV has been cast in such a framework. It can be seen that 

if the magnitude of the transfer functions between sea surface waves and forces and moments on 

an AUV are known, then the statistics of the forces and moments on the AUV body can be 

determined. 

As an example, the pitch disturbance spectrum on the 21UUV in head seas and sea state 

2 conditions are calculated for various depths of the vehicle and depicted in figure 2.12. In 

generating these spectra, the ITTC recommended Bretschneider wave amplitude spectrum for sea 

state 2 was used, as well as the body contour generated transfer function from wave amplitude to 

pitch disturbance depicted in figure 2.5. 

Figure 2.13 depicts two possible time realizations of this pitch disturbance which are 

generated using the technique described in section 2.1.2 for generating time realizations of 

surface waves. The differences between the two realizations are due to the random phase used in 

each simulation. There are, of course, an infinite number of possible realizations of this pitch 

disturbance, each having the spectral representation depicted in figure 2.12. 
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Figure 2.12 Pitch Disturbance Spectrum for 21 UUV in Head Seas 
for Sea State 2 and at Various Depths 
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Figure 2.13 Two Possible Time Realizations of Pitch Disturbance 
to 21 UUV in Head Seas, Sea State 2 and at 10 Meters Depth 
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Chapter 3    EXPERIMENTAL TESTING 

In this chapter, experiments which test the theory of chapter 2 are discussed, and results 

of tests conducted on a 21UUV model are presented and compared with the earlier developed 

theory. While chapter 2 theory deals with forces on a stationary body, the wave forces on a 

forward moving AUV are also of interest as many AUV missions are conducted while the vehicle 

is moving with forward velocity. Also presented here, then, are experimental results of wave 

forces on a forward moving AUV model. 

3.1 Experimental Setup 

The experimental apparatus and AUV model are shown in figures 3.1 and 3.2. 

3.1.1 Experimental Apparatus 

The Massachusetts Institute of Technology's Ocean Engineering Testing Tank was used 

to conduct model testing. The tank has dimensions 110 feet (length) by 8 feet (width) by 4 feet 

(depth), is filled with fresh water, and is equipped with a wave maker and moving carriage. 

The carriage assembly is suspended by rollers from a cylindrical beam fixed to the 

ceiling along the length of the tank. The carriage, on which a mast and AUV model were 

mounted, are capable of sliding the length of the tank, with the AUV model submerged in the 

tank water. Also affixed to the carriage assembly is a belt drive which can propel the carriage at 

speeds up to 2 meters per second along the beam. The speed of the carriage is controlled, and 

from a dead stop, the belt drive reaches a desired speed within 2 seconds of activation. 
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Figure 3.1 Experimental Apparatus Setup 
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Figure 3.2 21UUV Model Used in Testing 
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The wave maker, located near one end of the tank, consists of a rigid metal wall spanning 

the width and depth of the tank. The metal wall is allowed to pivot about its attachment to the 

bottom of the tank, and it is driven by a hydraulic actuator mounted at its top. Waves of 

frequencies between 0.2 Hz and 3.0 Hz can be generated. At the far end of the tank from the 

wave maker is densely packed plastic netting suspended in the water which acts as a wave 

suppresser. The suppresser absorbs much of the wave energy as it reaches the "beach" end of 

the tank, thus largely reducing the amount of reflected wave energy in the tank. 

The wave probe used for measuring wave height uses two parallel copper wires 

separated by approximately one centimeter mounted on a stiff frame and positioned vertically in 

the water. A potential is applied between the two wires, and the varying resistance, resulting 

from the change in water level due to waves, is the means by which water elevation is measured. 

The wave probe was calibrated at the beginning and end of each data collection set. 

3.1.2 AUV Model 

The AUV test model was manufactured as a 1:4.188 scale model of the 301 inch long 

version of the 21UUV being developed at NUWC. The model body contour is precisely that of 

the 21UUV, including the contour of the tail section and fins. The model was constructed in 5 

parts, and then assembled. The nose and tail sections were manufactured from PVC, while the 

two inner cylindrical sections were made from hollow cast acrylic tubing. The sensor section of 

the model, manufactured from 6061-t6 aluminum, housed a 6-axis strain gauge sensor which was 

mounted to the model at the sensor's bottom and to the rigid support mast at the sensor's top. As 

a result, the resultant hydrodynamic forces and moments on the AUV model were transmitted 

through the sensor to the rigid support mast, allowing for their measurement. The five sections 

assembled as depicted in figure 3.2 and resulted in a streamlined model of the full scale 21UUV. 

The 6 axis strain gauge sensor was calibrated the first and last days of model testing. 

43 



During data collection, the sensor's 6 channels and the wave probe's 1 channel were 

simultaneously sampled at 30 hertz, with the data being recorded by a 386 personal computer. 

3.2 Testing 

3.2.1 Overview 

Three series of tests were conducted: two series where the AUV model was kept 

stationary, and the third where the model was towed through the water with forward speed. In 

the first group of tests, the stationary model was oriented with its longitudinal axis perpendicular 

to the oncoming wave crests, i.e., as if in head seas. In the second series of tests, right beam seas 

were investigated and the stationary model was oriented with its longitudinal axis parallel to the 

oncoming wave crests. In the third series of tests, the model was towed with a fixed forward 

velocity counter to the direction of the wave propagation, simulating an AUV underway in head 

seas. For the tests involving a stationary model, the wave gauge was positioned to measure the 

water elevation at the mid-length position of the model, thus allowing for phase comparisons 

between the wave elevation and the forces and moments on the model. 

The parameters varied during the course of the testing were: 

(1) wave amplitude, 

(2) wave frequency, 

(3) AUV speed and orientation, and 

(4) AUV depth 

3.2.2 Scaling Considerations 

3.2.2.1 Wave Frequencies 

44 



It is shown in chapter 2 that the ratio of wavelength to AUV length is a primary factor 

in the transfer function between the surface wave motion and the forces which affect the AUV. 

In addition, figure 2.1 depicts the range of wave frequencies over which the majority of wave 

energy is expected for a variety of sea conditions. Therefore, the frequencies of waves generated 

during the tests were chosen such that they produced a wavelength similar in scale to the model 

21UUV length as full scale waves would produce relative to the full scale 21UUV length in a 

similarly scaled water depth. 

An example clarifies the calculation: 

Example of Wave Frequency Scaling 

Given: 

Wave tank depth 

Scale of model 

Full scale wave frequency (for example) 

Full scale 21UUV length 

Gravity 

Calculation: 

Full scale depth (model depth / scale) 

Full scale wavelength (equation (2.2)) 

Model wavelength (scaled) 

Model frequency (equation (2.2)) 

48 in (1.2192 m) 

1:4.188 

2 rad/sec 

301 in (7.6454 m) 

9.806 m/s2 

5.106 m 

14.984 m 

3.578 m 

4.093 rad/sec 

Table 3.1 contains the frequencies and wavelengths of waves (full scale and resulting 

model) used during testing. The 20 frequencies of full scale waves indicated in table 3.1 span the 
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range of frequencies expected of ocean waves as described by the ITTC recommended wave 

spectrum. 

3.2.2.2 AUV Speeds 

While conducting the tests during which the model AUV was towed, the Froude number 

of the full scale 21UUV was considered in determining the velocity at which to tow the model. 

Froude number similitude implies 

Fr ■ =      fs    =   ,        = Fr fi Jsh  4K    m (3.i) 
u

m=
ufsJ% 

where fs and m represent/«// scale and model, respectively. Data was collected at the two model 

tow speeds shown in table 3.2, and while higher tow speeds were considered, sensor load capacity 

precluded higher speed testing. 
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Full Scale Model 

0) (rad/s) X(m) Mm) 0) (rad/s) 
0.65 65.884 15.732 1.330 

0.80 52.476 12.530 1.637 

0.95 43.118 10.296 1.944 

1.10 36.156 8.633 2.251 

1.25 30.734 7.339 2.558 

1.40 26.365 6.295 2.865 

1.55 22.758 5.434 3.172 

1.70 19.731 4.711 3.479 

1.85 17.165 4.099 3.786 

2.00 14.984 3.578 4.093 

2.15 13.129 3.135 4.400 

2.30 11.557 2.760 4.707 

2.45 10.226 2.442 5.014 

2.60 9.099 2.173 5.321 

2.75 8.141 1.944 5.628 

2.90 7.324 1.749 5.935 

3.05 6.622 1.581 6.242 

3.20 6.017 1.437 6.549 

3.35 5.490 1.311 6.856 

3.50 5.030 1.201 7.163 

Table 3.1 Frequencies and Wavelengths Investigated During Testing 

Ufx (m/s) 1.0 1.5 

Um (m/s) 0.489 0.733 

Table 3.2 Tow Speeds Investigated During Testing 
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3.2.3 Tests Conducted 

Table 3.3 summarizes the 320 trials conducted during the course of testing. 

Wave to 
Model 
Aspect 

Model 
Speed (m/s) 

Model 
Centerline 
Depth (m) 

Wave Amp 
per 

Frequency 

#of 
Frequencies 

Head 0 0.379 3 20 

Head 0 0.787 3 20 

Beam 0 0.379 3 20 

Beam 0 0.787 3 20 

Head 0.489 0.379 2 20 

Head 0.733 0.379 2 20 

Table 3.3 Summary of Tests Conducted 

The 20 wave frequencies referred to in table 3.3 are those listed in table 3.1. 

3.3 Test Results 

3.3.1 Raw Data 

The seven channels simultaneously recorded during each of the trials included the six 

axes from the sensor mounted inside the model body plus the wave gauge output. An example of 

the seven channels sampled (with force, torque, and wave amplitude conversions applied) during 

one test run is depicted in figures 3.3a through 3.3d. This particular sample produced three data 

points for the case of beam sea waves of 5.321 rad/s for the 0.379 meter deep model.   As is 
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shown in figure 3.3, three wave amplitudes were generated during each trial when the model was 

held stationary. During tests in which the model was towed, wave amplitude was held constant 

during the course of each data run. 

E 
Z 

Figure 3.3a Sample of Surge Force and Roll Moment Raw Data. Beam sea effects are 

investigated here, and during this data collection run, wave amplitude was increased in three 

distinct steps as shown in figure 3.3d. While the amplitude of surge force, X, is only slightly 

larger than the sensor and A/D converter resolution, roll moment, K, more fully spans the sensor 

and A/D converter full range. 
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Figure 3.3b Sample of Sway Force and Pitch Moment Raw Data 

Figure 3.3c Sample of Heave Force and Yaw Moment Raw Data 
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Water Elevation 

Figure 3.3d Sample of Water Elevation Raw Data 

3.3.2 Signal Processing 

The frequency of encounter between the model and waves is given in (Newman 1977) as 

(Oe = co0 -kUcosQ (3.2) 

where co0 is the wave frequency, U is the forward speed of the model, and 8 is the angle between 

the model x axis and the direction of wave travel. The highest frequency of encounter between 

the model and waves during testing was evaluated as 11.0 rad/s, or 1.75 Hz. 

Prior to evaluating the amplitude of the signal coming from each of the seven channels, 

data from each channel was digitally filtered using a Chebyshev type II lowpass, stopband ripple 

filter (MATLAB 1992). The 9 pole filter had a cutoff frequency of 3.5 Hz and a stopband of 

negative 60 dB. A Bode plot of the filter frequency response is depicted in figure 3.4. The 

signals were first filtered in the forward, and then reverse directions to yield a zero phase shifted, 

filtered version of the output signals. 
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Figure 3.4 Frequency Response of Filter 

Two examples of sampled and filtered signals (superimposed) are depicted in figure 3.5. 

The first of the two signals shown is the 35 to 45 second window of the Y force depicted in figure 

3.3b. The second of the two signals shown is a 25 second window of the X force recorded while 

the model was being towed at 0.489 m/s under 2.251 rad/s waves. Filtering a low frequency and 

relatively noiseless signal such as Y in figure 3.5 leaves it virtually unchanged. The signal 

representing X in figure 3.5 has a significant level of high frequency carriage rumble noise 

superimposed upon it, and filtering a noisy signal such as this allowed better estimation of the 

amplitude of the wave induced hydrodynamic force. 
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Figure 3.5 Two Samples of Unfiltered and Filtered Signals 

3.3.3 Experimental Data vs. Theory 

After the signals were filtered, amplitudes of the signals were determined and the ratios 

of force and torque to wave amplitude were calculated and plotted versus frequency. 

Additionally, the phase difference between the wave elevation sinusoid and force / torque signals 

were measured and plotted for the cases when the model was stationary. The vertical and 

horizontal displacement parameters were calculated for each test conducted and were found to be 

less than 0.4 in all cases, establishing the tests within the range of displacement parameters 

assumed in chapter 2. 

3.3.3.1 Stationary Model in Head Seas 

Figures   3.6  through  3.8   compare  theoretical  and  experimental  transfer  function 

magnitude and phase information for X, Z, and M versus wave frequency for the model at a 
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centerline depth of 0.379 m. The theoretical curves were developed using the methods described 

in chapter 2 with the body contour of the model taken into account. Similarly, figures 3.9 

through 3.11 compare the same transfer function magnitude and phase information for the model 

at a centerline depth of 0.787 m. 

Resonance in the wave tank across its width at wave frequencies of 3.3 and 5 rad/s 

appear to cause erratic data near these frequencies during the course of testing, and the result is 

seen in the data presented here. 

While the shallow and deep model data presented for the X and M transfer functions is 

well predicted by the theory both in phase and magnitude, the method used to predict the transfer 

function for Z fails to include a force component which accounts for the resultant vertical force 

when the water wavelength is the length of the model body. The predicted zero in X is observed 

at or near this frequency, as both figures 3.6 and 3.9 show in the magnitude and phase plots The 

phase of this unpredicted Z force is consistent with that which would be expected of vertical drag 

proportional to wave velocity in the aft section of the model body. The inclusion of such a drag 

component into the heave force model was investigated, and produced a far worse low frequency 

fit to the data than that presented in figures 3.7a and 3.10a. Because model accuracy is deemed 

more important at lower frequencies where the majority of wave spectral energy is expected, the 

previously developed model for heave force will be used in subsequent discussion. 

It is seen that X, M and Z are all approximately linearly related to the wave amplitude 

£(co), thus allowing for their transfer function representation. 
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Figure 3.6a Surge Force Transfer Function Magnitude for Shallow Model in Head Seas 

Note: The data points Y, V, and V represent data taken from 
the model under waves of increasingly higher amplitudes, respectively. 
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Figure 3.7a Heave Force Transfer Function Magnitude for Shallow Model in Head Seas.  The 

erratic effect of wave tank resonance across its width at 5 rad/s is clearly seen. 
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Again, the effect of wave tank resonance at 5 rad/sec is seen. 
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Figure 3.9a Surge Force Transfer Function Magnitude for Deep Model in Head Seas 
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3.3.3.2 Stationary Model in Beam Seas 

Figures 3.12 through 3.16 compare theoretical and experimental transfer function 

magnitude and phase information for Y, Z, K, M and N versus wave frequency for the model at a 

centerline depth of 0.379 m. The theoretical curves were developed using the methods described 

in chapter 2 with the body contour of the model taken into account. Similarly, figures 3.17 

through 3.21 compare the same transfer function magnitude and phase information for the model 

at a centerline depth of 0.787 m. 

Again the data is well predicted by theory in phase and magnitude, with the exception of 

the prediction of K, where no theory is presented. The scatter in data for M and N is noted, as 

are the relatively small values of M and N when compared to M in head seas. Because the 

magnitudes of the M and N moments in beam seas are relatively small, sensor axis crosstalk and 

the effect of imperfect waves are possible causes of the scatter in data depicted in figures 3.15, 

3.16, 3.20, and 3.21. 
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Figure 3.12a Sway Force Transfer Function Magnitude for Shallow Model in Beam Seas 
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Figure 3.12b Sway Force Transfer Function Phase for Shallow Model in Beam Seas 
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Figure 3.13a Heave Force Transfer Function Magnitude for Shallow Model in Beam Seas 
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Figure 3.13b  Heave Force Transfer Function Phase for Shallow Model in Beam Seas 
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Figure 3.16a Yaw Moment Transfer Function Magnitude for Shallow Model in Beam Seas 
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Figure 3.16b Yaw Moment Transfer Function Phase for Shallow Model in Beam Seas 
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Figure 3.17a Sway Force Transfer Function Magnitude for Deep Model in Beam Seas 
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Figure 3.17b Sway Force Transfer Function Phase for Deep Model in Beam Seas 
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Figure 3.18a Heave Force Transfer Function Magnitude for Deep Model in Beam Seas 
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Figure 3.18b Heave Force Transfer Function Phase for Deep Model in Beam Seas 
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Figure 3.20a Pitch Moment Transfer Function Magnitude for Deep Model in Beam Seas 
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Figure 3.20b Pitch Moment Transfer Function Phase for Deep Model in Beam Seas 
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Figure 3.21a Yaw Moment Transfer Function Magnitude for Deep Model in Beam Seas 
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Figure 3.21b Yaw Moment Transfer Function Phase for Deep Model in Beam Seas 
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3.3.3.3 Forward Moving Model in Head Seas 

Figures 3.22 through 3.24 show experimental data depicting transfer function magnitude 

information for the dynamic components of X, Z and M versus wave frequency for the model at a 

centerline depth of 0.379 m and 0.489 m/s forward speed. Theoretical curves for the stationary 

model are plotted with the data for reference. Similarly, figures 3.25 through 3.27 show 

experimental data for the model at the same depth with a forward speed of 0.733 m/s, with the 

same theoretical stationary model curves plotted for reference. 

Continuous shedding of vortices behind the model is now expected due to the model 

forward speed. The resulting form drag due to this vortex shedding makes the stationary model 

theory less applicable. Deviation from the results of the static model testing is clearly seen for X 

and Z at higher frequencies, and particularly where the zero of the X transfer function was seen 

at approximately 6 rad/s for the static model AUV. The similarity of the M transfer function 

magnitude for the static and dynamic AUV cases is noted. 
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Figure 3.22 Surge Force Transfer Function Magnitude for Model at 0.489 m/s in Head Seas 

IZI/IZetal for Model at 0.489 m/s in Head Seas 
350 

300 

250 

200 

z = 0.379 m 

solid - theory 

points - data 

3 4 5 6 

wave frequency (rad/s) 

Figure 3.23 Heave Force Transfer Function Magnitude for Model at 0.489 m/s in Head Seas 
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Figure 3.24 Pitch Moment Transfer Function Magnitude for Model at 0.489 m/s in Head Seas 
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Figure 3.25 Surge Force Transfer Function Magnitude for Model at 0.733 m/s in Head Seas 
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Figure 3.26 Heave Force Transfer Function Magnitude for Model at 0.733 m/s in Head Seas 
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Figure 3.27 Pitch Moment Transfer Function Magnitude for Model at 0.733 m/s in Head Seas 
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Chapter 4    AUV DYNAMICS 

4.1 Equations of Motion 

4.1.1 Coordinate Systems 

The motion of an AUV in its body reference frame is typically related to its motion in an 

earth-fixed reference frame versus that of a true inertial frame. For the relatively slow moving 

ocean vehicle, the neglected motion of the earth's surface is of small consequence. 

Figure 4.1 depicts the three ordered rotations, known as Euler angles, which describe the 

coordinate transformation from the earth-fixed to body-fixed reference frames. To understand 

the rotations which describe this change in frames, it can be imagined that a body first begins in a 

neutral earth fixed attitude: facing true north, level with the horizon both to the north and east. 

To reach the final vehicle attitude, the first rotation is taken about the normal (z) axis, is called 

yaw and denoted \\t, and can be thought of as a heading change (positive right). The next rotation 

is pitch, taken about the transverse (y) axis, and is denoted 0 (positive nose up). The third and 

final rotation is roll, taken about the longitudinal (x) axis, and is denoted (j) (positive right). The 

order of these rotations is not arbitrary, and taken in a different sequence, could result in a 

different set of angles for the same final body attitude. All body attitudes, except those including 

8 = ±90°, can be uniquely described by the rotations of the three Euler angles. The singularity 

associated   with   6   =   ±90°   can   be   avoided   by   using   a   four   parameter   method   to 
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Top  View        p 

(2)        Rotation about the 
transverse (y) axis to 
the pitch angle 0. 

(1)        Rotation about the normal (z) axis to the 
yaw angle \|/. 
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View 

(3)        Rotation about the longitudinal (x) axis to 
the roll angle <|). 

Figure 4.1 The Euler Angles 
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describe the three basic rotations, but the natural insight into the body attitude is lost in this 

approach. For this discussion, 101 < 90° is a standing assumption. 

Based on the SNAME (1950) notation, the motion of an AUV can then be described with 

the following vectors: 

Tlr=K     Vl] rf=[x     y     z]        Ti2
r=[<|)     9     ¥] 

vr=[vf     v2] VM"     v     w] V2=[P     ?     r] (4-D 

xT=[zJ     %l\ i*=[X     Y     Z]       iT
2=[K     M     N] 

where T| represents position and attitude information which fixes the vehicle in the earth reference 

frame, v represents translation and rotation information relative to the body fixed reference 

frame, and x represents external forces and moments acting on the AUV in the body reference 

frame. 

The scalars x, y, and z from equations (4.1) represent the vehicle position in an earth 

fixed, right hand, three dimensional reference frame with the x-axis and y-axis pointing to the 

horizon, and the z-axis positive downward. The scalars <|>, 6, and \|/ are the previously mentioned 

Euler angles of roll, pitch, and yaw, respectively. The scalars u, v, and w represent body-fixed 

reference velocity along the longitudinal axis (surge), the transverse axis (sway), and the normal 

axis (heave). The scalars p, q, and r refer to right hand rule angular rotation rate about the body 

longitudinal (x) axis, transverse (y) axis, and normal (z) axis, respectively. The values X, Y, and 

Z represent forces along the body x, y and z axes respectively. K, M, and iV are moments along 

the axes which would cause positive roll, pitch and yaw, respectively. Table 4.1 summarizes the 

SNAME notation. 

The description of the vehicle's flight path in the earth fixed frame given the body fixed 

motion is governed by the transformation matrix J, (T|2), i.e. 
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DOF MOTION FORCES 
and 

MOMENTS 

LINEAR 
and 

ANGULAR 
VELOCITY 

(v) 

POSITIONS 
and 

EULER 
ANGLES 

(Tl) 
1 translation in x (surge) X u X 

2 translation in y (sway) Y V y 
3 translation in z (heave) Z w z 
4 rotation about x-axis (roll) K p ty 
5 rotation about y-axis (pitch) M q e 
6 rotation about z-axis (yaw) N r V 

Table 4.1. SNAME Notation Used for Ocean Vehicles 

Ji(l2) = 

T|l=Jl(l2)Vi 

c\|/c9 -.yi|/c(|) + c\|/.y0s<|) systy + cyctysQ 

s\j/c6 cyc<)) + s'(jw6.s'\|/ -cysty + sQsycty 

-50 cQsty cQcty 

(4.2) 

where s(»), c(«), and ?(•) represent sin(»), cos(»), and tan(»), respectively. 

Similarly, the description of the vehicle's earth fixed rotation given the body fixed 

rotation vector is governed by the transformation matrix J2(T|2), i.e. 

J2(Th) = 

Th=J20l2)V2 

1       stytQ        ctytQ 

0        cty -sty 

0     sty/cQ ctyl cQ 

(4.3) 
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Since each of the two reference frames uniquely maps to the other, it follows that the two 

transformation matrices are invertible, and the reverse transformations also hold, i.e. 

r-l 
v,=jr(Ti2)ii 

V2=J2'(T12)li2 

are also true. 

More generally, it can be written 

(4.4) 

(4.5) 

TJ = J(T12)V 

i-l V = J"(T12)TI 

where 

J(T12) = 
'Jl(Th) 0 

0 J2(T12) 

(4.6) 

(4.7) 

(4.8) 

4.1.2 Rigid Body Dynamics 

The rigid body equations of motion for an underwater vehicle can be written about an 

arbitrary origin. When considering an AUV with body symmetry, it is convenient to take the 

origin as the intersection of the longitudinal, lateral, and normal axes of the body. If the cross 

moments of inertia about the center of gravity are negligible, then using the parallel axis theorem, 

the rigid body equations of motion can be expressed as: 
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m[ü-vr + wq- xG(q2 + r2) + yG (pq -r) + zG(pr + q)] = X 

m[v-wp + ur-yG(r2 + p2) + zG(qr-p) + xG(qp + r)] = Y 

m[w -uq + vp- zG(p2 + q2) + xG(rp- q) + yG(rq + p)] = Z 

Ixp + (IZ- ly)qr + m[yG(w -uq + vp) -zG(v-wp + ur)] = K 

I q + (Ix - Iz)rp + m[zG(ü -vr + wq)-xG(w-uq + vp)] = M 

Izr + (Iy- lx)pq + m[xG{v -wp + ur) -yG(ü - vr + wq)] - N 

(4.9) 

where rG = [xG   yG    ZQ] represents the displacement from the origin to the center of gravity. 

The above equations can be written in the more compact form (Sagatun and Fossen, 1991): 

MMv + CJM(v)v = x "RB (4.10) 

where M RB 

m 0 0 0 mzG -myG 

0 m 0 -mzG 0 mxG 

0 0 m myc -mxG 0 

0 -mzG myG h 0 0 

mzG 0 —mxG 0 h 0 

-myG mxG 0 0 0 h 

(4.11) 

and the Coriolis matrix, though not unique, can be written in a skew symmetric form 
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C«,(v) = 

0 0 0 

0 0 0 

0 0 0 

m(yaq + ZGr) m(ycp + w) m(zGp-v) 

m(xGq-w) -m(zGr + xGp) m(zGq + u) 

m(xcr + v) m(ycr- -«) -m(xGp + yGq) 

m(yGq + zGr) -m(xGq-w) -m(xcr + v) 

-m(yGp + w) m(zGr + xcp) -m(yGr-u) 

-m(zGp-v) -m{zGq + u) m(xGp + yGq) 

0 Izr -lyq 

-lj 0 Ixp 

lyq -IxP 0 

(4.12) 

Here it is worthwhile pointing out that the above relationships are Newton's equations for 

six degrees of freedom, and that the vector %RB =[X     Y     Z     K     M     N]T represents all 

external forces on the vehicle, such as hydrodynamic added mass and damping terms, restoring 

forces and moments caused by gravity and buoyancy, and any controls and disturbances. 

4.1.3 Hydrodynamic Forces 

While the rigid body equations of motion can be exactly derived for a given body, the 

external force vector, TRB, is usually obtained by using a combination of theoretical and 

experimental methods, which is to say that an exact solution for xRB is not available. Fossen 

(1994) uses the notation 

^RB ~ t/? +1 v + ^E + ^c (4.13) 

where 

represents the radiation induced forces, and is the vector sum of the 

hydrodynamic added mass, potential damping and restoring forces, 

is the vector of viscous damping forces 
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T£        represents the environmental forces, including those caused by currents and 

waves, and 

TC        is the vector of control forces, such as those from thrusters and control 

surfaces. 

Then it can be shown that the first term in equation (4.13) can be represented as 

%R = -MAv-CA(v)v     ^(v)v        -gCn) 
added mass and Coriolis        potential damping       restoring forces 

(4.14) 

Here, the matrices which comprise the added mass and Coriolis terms are represented as 

M,=- 

x» Xi X-w X
P 

X4 *r 

Yi Yi V* YP n Yr 

Zu Zy z» Zi> z, zr 

Kü Kv Kw Ki, K« Kr 

Mü M, Mw Mp M. M, 

N, N, N,„ Nh N:, N> 

(4.15) 

and though not unique, CA(v) can be written in the skew symmetric form 
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where 

C,(v) = 

0 

0 

0 

0 

-c\ 
-c 

0 
0 
0 

< 
0 

-c 

,24 

.26 

0 

0 

0 

-cl 

0 
i24 

-C; 

c15 

c35 

c45 

c 
c 

-c. 
-c, 

A 
26 
A 

0 

~56 

-Q 
56 

cn = *^ A      — 

c   = 

c 
-■34 cr = 
c   = 

cf 

c 56 

~XWU ~ YWV ~ ZWW - ZpP - Zq<l ~ ZS 

A> + Y>v + Y*w + Y^p + Ykq + Y-r 

XwU + YwV + ZwW + Zi,P + Zifl + Z/ 

~Xüu - Xiv ~ Xww ~ XPP ~ Xifl ~ Xrr 

-X.u-Y.v-Y-w-Y-p-Y-q-Y.r 

Xüu + X-v + X^w + X-p + X-q + X-r 

-Xru - Yrv - Zj.w - Krp - Mrq - Nhr 

Xyii + YyV + ZyW + Kkp + M^q + M-r 

-X-u-Y-v-Z.w-K.p~K.q-Ks 

(4.16) 

The potential damping term from equation (4.14), DP(v)v, results from the generation of waves 

on the free surface due to the motion of the AUV, and can therefore be considered negligible 

when the AUV is sufficiently deep to preclude its generation of waves (Newman 1977). The 

restoring forces are those caused by the forces of gravity and buoyancy upon the vehicle, and 

recalling that the z axis is taken positive downward, can be represented 
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g(1) = 

(W-B)sQ 

-(W-B)cQsty 

-(W-B)cQc§ 

-(yGW- yBB)cQc<\> + (zGW- zBB)cQs<$> 

(zGW- zBB)sQ + (xG W - xBB)cQc$ 

-(xcW - xBB)cQs§ -(yGW- yBB)sQ 

(4.17) 

where   W  and  B  represent  the   vehicle  weight  and  buoyancy   forces,   respectively,   and 

rB = [xB   yB   zB] is the displacement from the origin to the center of buoyancy. 

The second term of equation (4.13), representing viscous damping, can be written in the 

form 

xv = -D„(v)v 
viscous damping 

(4.18) 

where the matrix Dv(v) can be calculated with varying degrees of accuracy by either direct 

experimentation or the use of published experimental data such as that in (Hoerner 1965, 1975) 

for similar shaped bodies. 

In this discussion, the characterization of the environmental force term, xE from equation 

(4.13), will be restricted to the forces caused by surface waves, and is the subject of chapters 2 

and 3. The final term in equation (4.13), the control vector Tc, is dependent upon the mix of 

thrusters and / or control surfaces which are available for a specific AUV. 

4.1.4 Body Symmetry Considerations 

In the above discussion, equations (4.10) and (4.13) taken together provide the general 

framework for developing the nonlinear, highly coupled equations of motion for an AUV, with 
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the only assumption thus far being that the cross moments of inertia about the center of gravity 

are considered negligible. Further exploitation of the symmetry of an AUV body can result in 

simplified representations of the rigid body mass and Coriolis matrices from equations (4.11) and 

(4.12), as well as those matrices comprising the hydrodynamic added mass and Coriolis forces, 

restoring forces, and viscous damping terms. 

The top-bottom and left-right symmetry of the 21UUV allows for simplification of the 

hydrodynamic added mass and Coriolis matrices, namely 

M, 

** 0 0 0 0 0 

0 n 0 0 0 Yr 

0 0 Zw 0 z, 0 

0 0 0 KP 
0 0 

0 0 M* 0 Mk 0 

0 N, 0 0 0 Nr 

(4.19) 

and the same representation for CA(v) as in equation (4.16), where now 

CA=-ZwW~Z^ C\6 = YiV + Yf C2
A
4 = Z^w + Z-q 

Cf = ~XÜU C\A = -YiV-Yf CA  = Xi>u 

Cf = -Y,v-N,r Cf = ZqW + M.q C5A6 = -KpP 

(4.20) 

(Fossen 1994). 

Considering only first order viscous damping terms, the form of Dv(v)  for this 

discussion is chosen as 
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Dv(v) = - 

u\u\\   1 0 0 0 0 0 

0 K 0 0 0 K 
0 0 zw 0 z« 0 

0 0 0 KP 
0 0 

0 0 K 0 M« 0 

0 Nv 0 0 0 N 

(4.21) 

Also assumed for the remainder of this discussion is that for the 21UUV, yG= 0, which 

further simplifies CRB(v), MRB, and g(Tj). 

4.2 Model Simplifications 

Healy and Marco (1992) suggest that the 6 degree of freedom equations of motion for an 

AUV can be divided into three non-interacting (or lightly-interacting) sets of equations for control 

of speed, steering and diving, each involving the state variables: 

(1) Speed system state: 

(2) Steering system states: 

(3) Diving system states: 

u(t) 

v(t), r(t), \|/(t), x(t) and y(t) 

w(t), q(t), 6(t), and z(t) 

The rolling mode (p(t) and <\>(i)) is left passive in this approach for their vehicle, the Naval 

Postgraduate School AUVH Their motivation for this approximation is the limited number of 

actuators on their vehicle, consisting of forward thrusters, stern planes and rudders. 

An approach similar to this is currently being used in the development of a sliding 

controller for a precursor to the 21UUV, the NUWC LDUUV, though the rolling mode is actively 
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controlled for this vehicle. With this controller design, inner loop pitch and yaw controllers are 

used to implement desired attitude control action calculated in the outer loop depth and heading 

controllers, respectively. With this model simplification and accounting for the body symmetry 

of the LDUUV which is similar in shape to the 21UUV, control of the vehicle in the dive and 

steering planes are seen as nearly identical problems, the only difference being the restoring 

forces which act in the dive plane and are absent in the steering plane. The speed system and roll 

system controllers are somewhat more straightforward to design and implement because of the 

actuators available on the vehicle (a forward thrust propeller and coordination of the stern and 

rudder planes as ailerons). 

Here, attention is restricted to the longitudinal plane, and the formulation of section 4.1 

yield the state equations 

(m-Xü)ü= (Z^ -m)wq + (Z- + mxG)q2 + (nuc - Y-)r2 + 

(m - y.)vr - mzG(pr + q) + Xu]u]\u\u + 

(B-W)sQ + Xd(t) + X!hr + 

(Iy -M-)q = (lz -Jx-Nf + Kp)rp + mzc(vr-ü- wq) + 

{mxc + M^)vv + (-Z4 - mxG)uq + (mxc -Yi)vp + 

(Xü-Zt,)uw + (zBB-zGW)sB + (xBB-xGW)cQc§ + 

Mww + Mqq + Md(t) + M&u\ 

(m-Z*)w= (rwcG +Z-)q + Zqq + Zww + (F- -m)vp + 

(m - Xü )uq + {Yj. - mxG )rp + rr 

(W-B)cBc§ + Zd(t) + Zb «
25A. 

(4.22) 

(4.23) 

(m-Xü)uq + (Y- -mxG)rp + mzc(p
2 + q2)+ (4.24) 



where XJt), ZJt) and Md(t) are wave disturbance terms, and Xthr and 8V are the forward thrust 

and stern plane deflection angle, respectively. By making the further assumptions that 

(b(?) = 0       M =M u       M =M u       Z =Z u       Z  =Z u 

and eliminating all second order non-longitudinal plane terms yields the decoupled equations 

which will be used in subsequent discussions: 

(m-Xü)ü= (Z^ -m)wQ + (Zd + mxG)Q2 -mzGQ + 

Xju\u + (B-W)sQ + Xd(t) + Xtlir + (4.25) 

*,s,"?8.* + ^."wS, + X52u\
2 

(Iy - My)Q = -mzcü- mzGwQ + (nvcG + M^)w + 

{Muq -Zq- mxG)uQ + (Muw + XÜ- ZJuw + (4.26) 

(zBB - zGW)sd + (xBB - xGW)cQ + Md(t) + Mh uhs 

(m -Z^)w= (mxG + Z-)Q + Zuwuw+(Zuq +m-Xü)uQ + 

mzGQ2 +(W- B)cQ + Zd(t) + Zsu
2bs 

(4.27) 

i = wcos6-Msin9 (4.28) 
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Chapter 5     CONTROLLER DESIGN AND 
SIMULATIONS 

Sliding control has been used successfully for position and trajectory control of 

underwater vehicles by Yoerger and Slotine (1985, 1986) with the JASON remotely operated 

underwater vehicle, Healy and Marco (1992) with the Naval Postgraduate School AUVIJ, and 

Hills and Yoerger (1994) with the NUWC LDUUV. 

In this chapter, computer simulations are used to investigate the performance of 

variations of sliding control as applied to the pitch axis of the 21UUV. Robust sliding control 

routines are first developed for integrated depth, pitch, and forward speed control of the 21UUV, 

and then an adaptive sliding controller is introduced for the pitch axis. Coordinated control of the 

21UUV in the longitudinal plane is demonstrated by simulating the 21UUV making a depth 

change maneuver. The performance of the adaptive pitch controller in the presence of varying 

degrees of parametric uncertainty is also demonstrated. 

Disturbance cancellation properties of extensions to the adaptive pitch controller is then 

investigated, using first a monochromatic pitch disturbance of known frequency, and then a 

stochastic disturbance of known spectrum. 

The development of the robust sliding controller and the adaptive sliding controller 

presented here is found in (Slotine and Li 1991). 
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5.1 Robust Sliding Control 

5.1.1 Overview 

The single input dynamic system of the form 

xw=f(x) + b(x)u (5.1) 

is considered here, where the scalar x is the output, n is the order of the system and denotes the 

number of derivatives of x with respect to time, u is the scalar input, and the functions/and b are 

generally nonlinear functions of the state vector x = [x   x   ...   x(n~])]T     and any  other 

measurable quantity. While the state vector x is assumed to be known exactly, the function/is 

not. Rather, the difference between f and its estimate is assumed to have a known bound that is a 

continuous function of the state and any other measurable quantity, i.e. 

/-/ < F(x) (5.2) 

Similarly, it is assumed that the control gain b is not exactly known, but is of known sign and is 

bounded by known, continuous functions of x. 

The desired, realizable state trajectory is denoted xd, and the trajectory error vector is 

denoted x = x-Xj = [x x ... x("_1)]r. The hyperplane S(t) in the state space R(n) is defined 

by 
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s(x;t) = (i + X)(n-})x = 0 (5.3) 

where A. is a strictly positive constant, and can be interpreted as the control bandwidth of the 

controller. 

Since b has known sign and bounds, and assuming here that b is positive, it can be seen 

that 

0<bnin<b<bma (5.4) 

and that the bounds on b can be written 

ß-'^ß (5.5) 
b 

where 

* = (*™A«),/2 (5-6) 

and 

V(x) = (bmm/bmn)
m (5.7) 

While a control law which maintains s - 0 would be ideal, it is also discontinuous across 

the hyperplane S(t) because of the uncertainties in the dynamic system. Thus, in practice, 

implementing such a law produces chattering in the control activity which is normally 

undesirable. To smooth such a discontinuous control law, a boundary layer neighboring the 

hyperplane can be used, namely 

B(t) = {x,   |*(x;0|<O} 
p.8) 

O>0 

92 



where the boundary layer thickness, O can be made time varying to exploit the bandwidth of the 

system. 

It is shown in (Slotine and Li 1991) that the control law 

u = b~l[u-ksat{s/0)] (5.9) 

where 

u = -f-s + x{n) (5.10) 

k=k(x)-k(xd) + täß(xd) (5.11) 

and 

*(x) = ß[F(x) + Ti] + (ß-l)|M| (5.12) 

with r| a small, strictly positive constant, will provide robust stability in the presence of the 

assumed parametric uncertainty in/and b. The sat (saturation) function of equation (5.9) is 

given by 

|;c| <1       =>       sat(*) = x 

|JC|>1       =>       sat(x) = sign(x) 
(5.13) 

Boundary layer dynamics are given by 

*(xJ>M>/ß(x„)       =>       ö = -Xö) + ß(x(/)*(xrf) 

k(xd)<täß(xd)        =>        Ö = -Ä.O/ß2(xd) + *(x</)/ß(x</) 
(5.14) 

with 

4»(0) = ß(xd)Ä(xd(0))A (5.15) 
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5.1.2 Application to 21UUV Longitudinal Plane Equations 

In the derivation of control laws for the 21UUV, the state vectors T| and v of equation 

(4.1) are assumed to be measured and known exactly, while v is assumed unknown but of known 

bounds. 

Considering first 21UUV depth control, from equation (4.28) 

z = wcos0-iisin0   -(wsin0 + wcos0) 0 (5.16) 

Then, 

st = z + \z (5.17) 

S= ° (5.18) 
/r

Z=IHmaxCOS0 + l"Lsinlel 

and ßz = 1. 

From equation (5.16) it is seen that the depth control of this AUV is reliant upon its pitch 

control, which is an intuitive result given the actuators available on the vehicle. Therefore, the 

resulting control requirement for 6 affects not only the pitch angle, but the depth control of the 

vehicle as well. While Qd is derived by the depth controller, 0^ and 0^ are both quantities used 

in the derivation of the pitch controller. 0^ can be found by numerical integration of Qd, and 0^ 

can either be approximated by using a numerical derivative of 0^, or can be uniformly replaced 

by 0 (with an accompanying decay in performance). Since Qd is a formulated quantity and is 

constructed using a smooth control law, taking the numerical derivative of 0^ is a viable option 

for the derivation of the pitch controller. 

The control of the pitch angle is considered next, and from equation (4.26), 
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e = /e+Ve ^519) 

where 

and 

/e = (7V - M-) ' [-mzGji - razGw9 + (mxc + Mw )vv + 

(MH, - Z4 -/7ixG)MG + (Muw + Xü-Z*)uw+ (5.20) 

(zBß - zGW)sm 6 + (xfiß - xGW)cosQ] 

b6=(Iy-M-)-]M5/ (5.21) 

«e=5.s (5.22) 

The external disturbance due to waves, Md(t), is assumed to be negligible for the moment. 

Then, where the estimates to the hydrodynamic and 21UUV body coefficients are 

denoted by a    , 

se = 0 + A.e0 (5.23) 

/e = (Iy - M^~l[-mzGwQ + (Muq - Z— mxG)uB + 

(M^+X.-Z^uw +aBB-zcW)smQ+ (5.24) 

(xBB - xGW)cosQ] 

If the above hydrodynamic and body coefficients are known to within a certain range of values, 

their estimates can be taken as the algebraic mean of the highest and lowest values, and with 

U      and Ivvl      known, Fa can be found from equation (5.2). If this method is used to calculate 

bQ, equations (5.6) and (5.7) may not hold true, but by using equations (5.5) and (5.21), a 

conservative value for ße can be calculated, and is found to be a constant. 
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The control of the 21UUV forward speed is considered last, and from equation (4.25) 

« = /„+*„«„ (5-25) 

where 

fu = (m-Xüy
l[(Z.-m)wQ + (Z^+mxG)Q2-mzGQ + 

Xu\Ju\u + (B- W)sin0 + X?8 uqhs + Xwb uwbs + Xg2«
28A.2] 

(5.26) 

and 

bu = (m-Xüy' (5.27) 

uu = Xthr (5.28) 

Again, the external wave disturbance, Xd(t), is assumed to be negligible for the moment. 

Noting that equation (5.25) is of first order, 

s=ü (5.29) 

l = (m-X-yl[(Z-,-m)we + (Z.+™G)Q2 + Xju\u + 

(B- W)sin0 + Xq&uq5x + Xw5uw5x + X&2u
25s

2] ■ 
(5.30) 

and with 6       assumed known, Fu can be found.   Again, a conservative value of ß„ can be 

calculated and is found to be a constant. 

With the completion of the above formulation, the choice of X,e  and Xz  remains. 

Guidance for the selection of sliding controller bandwidth is given in (Slotine and Li 1991) with 

concern for structural resonant modes, neglected time delays, and sampling rates addressed. 
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While unmodeled sternplane actuator dynamics may determine a reasonable choice for A,e, the 

value of Xz becomes dependent upon that of Xe. Because the outer loop depth controller 

develops the desired inner loop pitch rate and angle, Xz < A,e/4 is used so that A,e may be 

neglected when considering the equation of motion for z. 

5.2 Adaptive Sliding Control 

5.2.1 Application to 21UUV Pitch Equation 

Another approach to developing control laws in the presence of parametric uncertainty 

associated with the hydrodynamic and body coefficients of the equations in section 4.2 is to use a 

model based adaptive sliding controller. Where it was previously assumed in section 5.1.2 that 

the parameters in equations (4.25) through (4.27) are possibly time varying but bounded by 

upper and lower limits, the use of an adaptive sliding controller assumes no known bounds on the 

21UUV equation coefficients, but rather that the coefficients remain constant. 

Because pitch control is critical not only to the attitude but also to the depth control of 

the 21UUV, the application of adaptive sliding control will be presented here for the pitch 

equation. 

Equation (4.26) can be written 

a,9 + a2wQ + a3uQ + a4wu + a5 sin 6 + a6 cos0 + dx (t) + d0Md(t) = -M2
8V (5.31) 

where 
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'v -M. 

"M5, 

2, ,-x,- ̂ »w 

-M6„ 

1 

-Mx 

d,(r) = 

-M8., 

Mx 

-w u 

= Z-+/?uG-M^ 

-Mx 

xGvy - xBB 

-Mx 

(5.32) 

Estimates of the values of the above hydrodynamic and body coefficients can be obtained 

through experimentation or the use of published experimental data such as that in (Hoerner 1965, 

1975) for similar shaped bodies. Then if I vvl      and lül      are known, Z) such that \d,\     <Dcan 

also be conservatively estimated, where for the moment, Md (t) is considered negligible. 

Using the adaptive sliding pitch controller developed in the appendix yields the control 

and adaptation laws 

where 

8 =w   (Ve-Yä) 

ä = -TYTs( 

(5.33) 
'9 A 

8j ~ ^-e^     w®     M@     wu     sin 6     cos Ö 

a = [a,      «2     03      aA     äs     a6] 

r-]=T'T>o 
(5.34) 

and ka is such that 
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W>%>D (5.35) 

As noted above, the adaptation gain matrix, T, is symmetric and positive definite. In 

practice, a diagonal matrix with strictly positive entries can be selected which allows for easy 

tuning of the adaptation gain for each parameter estimate, at, individually. 

The adaptive sliding controller presented here, and referred to in later discussion, uses a 

time invariant boundary layer, O. Slotine and Coetsee (1986) present similar results for the 

adaptive sliding controller with a time varying boundary layer, <D(t). 

By comparing the laws for robust sliding pitch control and adaptive sliding pitch control, 

similarities can be seen. For the case when s remains inside its boundary layer, reformulating the 

robust sliding control law results in 

5v = M_2( oi^- s-Ya) s<®e (5.36) 

which can be compared to equation (5.33).  The on-line adjustment of k^cff using the laws given 

in section 5.1.1 for the robust sliding controller allows for better exploitation of the control 

"bandwidth" available (Slotine and Li 1991). 

5.2.2 Adaptive Wave Disturbance Cancellation 

Notwithstanding the stochastic nature of ocean water waves and the development of 

chapters 2 and 3, first considered is the case where the 21UUV is operating under a sea 

dominated by regular waves of a single known frequency, co, with unknown phase and amplitude. 

Then it is seen that the wave disturbance term in equation (5.31) can be written 

dQMd(t) = Oj sin(cof) + ag cos(cof) (5.37) 
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and by the addition of wave disturbance cancellation terms to Y and corresponding coefficient 

estimates to a in equations (5.33) and (5.34), namely 

QJ-XQQ     W0     «6     WU     sin0     cos 6     sin cor     cos cor Y = 

ä = [a,      02      Ö3      a4      a5      a6      a,      Og] 

(5.38) 

the adaptive cancellation of the single frequency wave disturbance is possible. 

In an attempt to extend the above idea to better cancel the disturbance caused by random 

water waves, additional disturbance cancellation terms which span some portion of the spectrum 

of the stochastic disturbance can be added to Y. While robust stability and performance 

guarantees can no longer be provided as they were previously, a potential improvement in pitch 

performance seems likely under at least some conditions, and this idea will be investigated. 

5.3 Simulation Results 

Simulation results are presented here which demonstrate the performance of the two 

variations of sliding control presented in sections 5.1 and 5.2. In all cases, the simplified, 

coupled 21UUV longitudinal plane equations ((4.25) through (4.28)) are used. 

5.3.1 Additional Modeling Considerations 

In the derivation of the longitudinal plane dynamic equations for the 21UUV, and 

subsequently during the controller design, no regard was given to actuator dynamics. For 

simulation purposes here, both the main thruster and sternplanes are modeled as first order 

systems which saturate, as depicted in figure 5.1. 
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Figure 5.1 Stemplane and Thruster Dynamics Model 

Another modeling consideration previously ignored is that the moment produced by the 

sternplanes grows with time until reaching its final value, M5 u 8r The Wagner or 'growth of 

lift' function given in (Woods 1961) can be used to describe the lift dynamics. To develop 90% 

of the final lift, the sternplanes must travel approximately 6 chord lengths (Newman 1977). 

For the 0.1 meter chord length 21UUV sternplane at 2 m/s, 90% lift is generated in about 

0.3 seconds. Equating this time to twice the time constant of a first order linear system results in 

an approximate bandwidth of 6.7 rad/sec. Since this bandwidth is somewhat greater than that 

assumed for the sternplane actuators, the lift dynamics are ignored for the purpose of these 

modeling considerations. 

Table 5.1 contains nominal values of the body, hydrodynamic, controller, and actuator 

coefficients used in the simulations. The values for the body and hydrodynamic coefficients were 

derived using strip theory and assuming the vehicle is neutrally buoyant. For hydrodynamic 

actuator constants (those with a 8V subscript) and values of the centers of buoyancy and gravity, 

the values provided by NUWC for the LDUUV are used. 
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Bodv Coefficients Hvdrodvnamic Coefficients 

m         1619 kg Muw 
849 kg                          Zuq       -770.4 kg 

W         15882N M
uq 

-3066 kg-m                   Z8        -99.3 kg/m 

B          15882N Mq -7255 kg-m2                  X-       -41.5 kg 

/,.         7100 kg-m2 
M* 121.5 kg-m                   XH|H|     -16.9 kg/m 

xG        2 x 10'6m M6, -355.1kg                       XA      -55.3 kg 

zG        0.005 m Zi 121.5 kg-m                   Xw8      -16.1 kg/m 

xB        0 m z* -1619 kg                       ^82      -36.7 kg/m 

zB         0 m 7 -201.5 kg/m 

Controller Constants Actuator Constants 

\                     0.125 slernplane                                                                   ^"thruster          "-^ 

KK            0-5 .v max 30°                          6,m„         -30° 

\^(»T\u                °01 x 
ihr max 650 N                            Xlhrmin       ON 

r0       diag[4000,10,1,100,1,0.1] 

Table 5.1 Nominal Body, Hydrodynamic, Controller and Actuator Parameters 

Unless otherwise stated, it is assumed that the body coefficients of table 5.1 are known to 

within 5% error (estimated coefficients are within 5% of the nominal coefficients), and that the 

hydrodynamic coefficients are known to within 30% error. Actual values of the hydrodynamic 

and body coefficients used for simulation dynamics are those of the nominal values. Estimated 

values of the hydrodynamic coefficients used by the robust sliding controllers in their model of 

the 21UUV dynamics are 130% of the nominal values except for added mass terms 

(XÜ,M^, M^, Z-, and Z^) which are 70% of the nominal values. Similarly, estimated values of 

the body coefficients are 105% of the nominal values except for the inertia terms (m and ly) 

which are 95% of the nominal values. 
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Adaptive sliding controller initial estimates for a vary and are detailed with each 

associated simulation. 

Simulation results for the conditions investigated here have indicated the following 

estimates for bounds on maximum accelerations: 

\w\     < 0.2 m/s2,     liil     < 0.2 m/s2,     lei     <0.1deg/s2 (5.39) 

Then from equations (5.32) and (5.39), it can be seen that I^O)^ < D = 0.08. 

5.3.2 Depth Trajectory Following 

Figures 5.2, 5.3, and 5.4 show simulation results of the 21UUV making a 10 meter depth 

change with the three integrated robust sliding controllers developed in section 5.1.2 controlling 

depth, pitch, and forward speed. Despite parametric uncertainty, depth trajectory following is 

good, and provides a baseline against which subsequent simulation results can be compared. 

Figure 5.5 depicts k%eff{t) for the robust sliding pitch controller during the depth maneuver. 

By comparison, figures 5.6 and 5.7 show simulation results of the 21UUV making an 

equivalent depth maneuver with the same depth and speed controllers, but with the pitch control 

law from equation (5.33). With T = 0, no parametric adaptation occurs, i.e. a = a(0). The 

parameter estimates are calculated using the same body and hydrodynamic coefficient estimates 

used in the previous simulation. This pitch controller is tuned to have approximately the same 

feedback gain, ke, as that of the robust sliding controller demonstrated in figure 5.3. With 

Ag -7~k6eJf(t), depth and pitch control depicted in figures 5.6 and 5.7 closely match those of 

figures 5.2 and 5.3. Speed control, while also nearly identical to the previous case, is of 

secondary interest, and is not depicted in this nor subsequent simulations. 
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Figures 5.8 and 5.9 depict the same depth maneuver as in the previous cases with the 

pitch control law from equation (5.33), and with r = ro from table 5.1. All other conditions 

from the previous simulation remain the same. The resulting parameter adaptation is seen to 

have a positive effect upon the pitch and resulting depth control of the vehicle. Figure 5.10 

depicts the adaptation of the vector a shown with the parameter se and its boundary layer <E>e. 

Convergence of the parameter estimates to the values they estimate is not observed, nor is it 

necessarily expected. Narendra and Annaswamy (1989) and Slotine and Li (1991) both provide 

a thorough discussion concerning the condition of persistent excitation under which parameter 

estimates do converge to their target values. 

Next considered is the performance of the adaptive pitch controller in the presence of 

more substantial parametric uncertainty. It is now assumed that the hydrodynamic coefficients 

from table 5.1 are totally unknown, with the lone exception of M6 , which is still assumed to be 

known to within 30% error. Dry body coefficients are assumed known to within 5% error as 

before. For the initial estimate of the adaptive controller parameter vector ä, the previous 

estimated values of the body coefficients and M6 are used, with the remainder of the 

hydrodynamic coefficient initially estimated to be 0. Actual values of the hydrodynamic and 

body coefficients used for simulation dynamics remain unchanged. 

Figures 5.11 and 5.12 show simulation results of the 21UUV attempting the 10 meter 

depth change with robust sliding depth and speed controllers, and the pitch control law from 

equation (5.33) with no adaptation. As illustrated, this control scheme is unstable. By 

comparison, figures 5.13 and 5.14 illustrate the beneficial effect of adaptation for the same initial 

conditions. Pitch control is shown to be stable, leading to good depth trajectory following. 

Figures 5.15 and 5.10 can be compared to see the effect of the added initial parametric 

uncertainty on the adaptation of the vector ä . 
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Figure 5.2 21UUV Depth Trajectory with Robust Sliding Pitch Controller. Depicted (clockwise 

from top left) are (1) desired and simulated vehicle depth, (2) desired and simulated vertical 

velocity, (3) desired and simulated pitch rate, which is the control variable used in the depth 

equation, and (4) the generalized error parameter, sz, and its boundary layer, <I>Z. It is seen that 

despite substantial parametric uncertainty, good depth trajectory following is achieved. Note that 

sz remains well bounded by 4>z, which is a design feature of the robust sliding controller, and 

indicates that the resulting vehicle depth trajectory is maintained within the expected bounds of 

performance given the level of parametric uncertainty present. 
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Figure 5.3 21UUV Pitch Response During Depth Maneuver. Here, the desired pitch rate is 

generated during the simulation by the depth controller, and the robust sliding pitch controller 

provides sternplane commands to follow the generated pitch trajectory. The sternplane is seen to 

remain within its saturation limits, and because of the high bandwidth of the sternplane actuator, 

sternplane angle follows the desired values closely. As in the case of the z controller, the error 

parameter, se remains bounded by Oe. 
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Figure 5.4 21UUV Speed Response During Depth Maneuver. The forward speed controller here 

attempts to regulate the vehicle at 2 m/s during the change in vehicle depth. The steady state 

forward speed error seen at the end of the run is due to the parametric error in the estimated 

constants that the controller uses in its speed model. The effect of thruster dynamics are seen as 

delivered thrust varies from desired thrust. As in the previous two cases, su remains bounded by 

<J>„. 
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Figure 5.5 Robust Sliding Pitch Controller &e^ (t). Though k^ varies with time, it is seen that 

Ken' ~ 7 ^0r tne duration of this depth change maneuver. 
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Figure 5.6 21UUV Depth Trajectory with Adaptive Sliding Pitch Control Law, T = 0. Here, the 

pitch control law from equation (5.33) is used with no adaptation of parameter estimates. This 

pitch controller is very similar to the robust sliding controller used previously, differing only in 

that the feedback gain k^eff(t) from the robust sliding controller is approximated by a constant, 

AQ = 7. Speed and depth controllers remain unchanged. As expected, depth trajectory following 

is very similar to that depicted in figure 5.2. 
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Figure 5.7 21UUV Pitch Response with Adaptive Sliding Pitch Control Law, T = 0. Pitch 

controller constants are ke = l, <£e = 0.012. a = a(0) is derived using the same parameter 

estimates used by the robust sliding controllers in the previous simulation. By design, pitch 

response is very similar to that depicted in figure 5.3. 
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Figure 5.8 21UUV Depth Trajectory with Adaptive Sliding Pitch Control Law, T = TQ. Here, 

the pitch control law from equation (5.33) is used with adaptation of parameter estimates, and 

speed and depth controllers remain unchanged. Depth trajectory following is slightly improved 

from the previous two cases (figures 5.2 and 5.6) as a result of parameter adaptation by the 

adaptive pitch controller. 

Ill 



pitch angle 
WD 
D 

T3 

•O ! 
'S 

c 
C3 

J3 

■a 

T3 c 

20 40 

time (sec) 

stern plane angle 

20 40 

time (sec) 

U 
T3 

T3 
i cr 

X! c 
CO 

4 

2 

pitch rate 

0 
A,   /   V 

\   ;/    ~^       """ 

-2 

\7 
-4 i               i 

0.02 

■a a. 
+ 
C 
cS 
CO *-> 

20 40 

time (sec) 

s and boundary layer 

60 

20 40 

time (sec) 

60 

Figure 5.9 21UUV Pitch Response with Adaptive Sliding Pitch Control Law, Y = ro. Pitch 

controller values and a(0) remain the same as the previous simulation, but parameter adaptation 

now takes place. Pitch response is improved from the previous two cases (figures 5.3 and 5.7), 

resulting in the better depth trajectory following seen in the previous figure. 
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Figure 5.10 Adaptation of ä and sewith Oe. The parameters ax{t) through a6(t) are shown 

here for the previous simulation, and it is seen that adaptation occurs only while \s& I > Oe. It is 

noted that the parameter estimates, ap do not necessarily converge to their target values, but sB 

does converge to the region inside boundary layer, Oe which implies that seA—> 0. 
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Figure 5.11 21UUV Depth Trajectory with Adaptive Sliding Pitch Control Law, T = 0. Here, 

the pitch control law from equation (5.33) is used with no adaptation of parameter estimates, and 

the depth and speed controllers remain unchanged. In this case, it is assumed that there is no 

prior knowledge of the hydrodynamic coefficients except for M5 , which is known to within 30% 

error as before. Body coefficients, as before, are assumed known to within 5% error. Because 

parametric uncertainty is so high, without adaptation this control scheme is unstable. 
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Figure 5.12 21UUV Pitch Response with Adaptive Sliding Pitch Control Law, T = 0. The pitch 

control law from equation (5.33) is used, and controller constants remain ke = 7 and <Pe = 0.012. 

ä = a(0) is derived using an assumption of no prior knowledge of hydrodynamic constants except 

for Mh , which is known to within 30% error as before.   The estimates of body coefficients 

remain unchanged. Parametric uncertainty and the lack of parametric adaptation leads to 

instability of this pitch controller. 
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Figure 5.13 21UUV Depth Trajectory with Adaptive Sliding Pitch Control Law, T = T0. Here, 

the pitch control law from equation (5.33) is used with adaptation of parameter estimates. 

Controller constants remain unchanged, and a(0) is computed as in the previous simulation with 

no prior knowledge of hydrodynamic coefficients except for M5 , which is again known to within 

30% error. Despite high initial parametric uncertainty, this controller executes a depth change 

with good trajectory following. 
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Figure 5.14 21UUV Pitch Response with Adaptive Sliding Pitch Control Law, T = T0. Pitch 

controller values are the same as reported in figure 5.12, as is a(0). Despite high initial 

parametric uncertainty, this adaptive sliding pitch controller provides stable performance which 

translates to the good depth trajectory following seen in figure 5.13. 

117 



50 

40 

al-hat and al (--) 

— 

30 - 

20 

in i 

a2-hat and a2 (j--) 

20 40 

time (sec) 

a3-hat and a3 (--) 

20 40 

time (sec) 

60 

60 

20 40 

time (sec) 

a4-hat and a4 (-) 

20 40 

time (sec) 

60 

60 

n n    a5-hat, a6-hat and a5 (—), a6 (-.) 

0.2 

0.05 s and boundary layer 

20 40 

time (sec) 

20 40 

time (sec) 

Figure 5.15 Adaptation of ä and sQ with <De. The parameters a,(0 through a6(t) are shown 

here for the previous simulation with almost total hydrodynamic coefficient uncertainty. Like the 

case presented in figure 5.10, adaptation occurs only while \se I > Oe, and parameter estimates do 

not necessarily converge to their target values, but seA —> 0. 
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5.3.3 Pitch Control in Regular Waves 

Now considered is the case where the objective of the pitch controller is to regulate the 

21UUV pitch angle at 0 degrees in the presence of a single frequency disturbance, such as that 

provided by regular waves. Though the coupled equations of motion and forward speed control 

are as before, the depth controller is disabled and no longer provides desired pitch information. 

Instead, 0d, 6^, and 9^ are maintained at 0, while ud is 2 m/s as before.   This is done in an 

attempt to maintain the coupling effects of the speed and heave equations to the pitch equation, 

particularly in the presence of disturbances to all three axes, as will be investigated in section 

5.3.4. Such a situation of regulating pitch at 0 degrees may arise in practice during a phase of 

AUV operation when the stability of vehicle attitude takes priority over vehicle vertical position 

in the water column. 

In the following simulations, ke and <I>e are adjusted from the previous simulations to 

demonstrate the effect of the disturbance adaptation. The previous values of ke and Oe provided 

a pitch controller insensitive to the level of disturbance, which, when canceled, did not saturate 

the sternplane actuators at the 21UUV forward speed of 2 m/s. 

Figure 5.16 depicts a simulation of the 21UUV subjected to a pitch disturbance of single 

frequency, with the pitch control law from equation (5.33) and no adaptation. In figure 5.17, 

pitch control of the 21UUV is shown with the same controller and subjected to the same 

disturbance, but with adaptation of the vehicle parameter estimates enabled. Though vehicle 

parameter estimates are updated through adaptation, little improvement in pitch regulation is seen 

with this second simulation. 

Assuming that the pitch disturbance frequency is known allows for use of the adaptive 

controller with disturbance cancellation terms as described in equation (5.38). Figure 5.18 

depicts this adaptive pitch controller performance in the presence of the same monochromatic 

disturbance used in the previous two simulations.    The advantage of being able to include 

119 



cancellation terms which allow for phase and magnitude matching of the disturbance is seen in 

figure 5.18 as this controller substantially eliminates the effects of the regular waves and best 

maintains the 21UUV pitch at 0 degrees. 
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Figure 5.16 Adaptive Pitch Control Law with Single Frequency Disturbance, T = 0. For this 

and the following simulations where a single frequency pitch disturbance is used, k$ = 80, 

Oe = 0.001, and M„(0 = 400sin(1.7f+ 0.3) N-m. The vector a(0) is calculated from here on 

with the assumption that body and hydrodynamic coefficients are known to within 5% and 30% 

error, respectively, with the estimated coefficient values chosen as described in section 5.3.1. 
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Figure 5.17 Adaptive Sliding Pitch Controller with Single Frequency Disturbance. This 

adaptive controller includes no disturbance cancellation terms, and T = T0. While parameter 

estimate adaptation occurs, it is seen that pitch performance is very similar to the previous 

simulation with no adaptation. 
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Figure 5.18 Adaptation to a Single Frequency Disturbance by the Pitch Controller. Here, F = 

diag[ro, 1001]. Performance is improved with this controller which uses two disturbance 

cancellation terms, Oj sin(1.71) and Og cos(1.71), to adapt to and cancel the pitch disturbance of 

known frequency, but of unknown phase and magnitude. Pitch response is significantly reduced 

from the previous cases, with final control action magnitude comparable to that of the previous 

two controllers. The error parameter, s6 is seen to decrease in amplitude so that it becomes 

bounded by <De, which implies that seA —> 0. 
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5.3.4 Pitch Control in Random Waves 

Considered here is pitch control for the 21UUV at a depth of 10 meters, in water 30 

meters deep, and in the presence of a disturbance which approximates that of sea state 2 

conditions. The theory presented in chapter 2 is used to calculate the spectra of pitch, heave, and 

surge disturbances. A set of possible time realizations for the three disturbances is then 

generated. These disturbances are used in simulations to investigate the performance of the 

adaptive sliding pitch controllers presented in section 5.2. 

Figure 5.19 depicts the single-sided pitch, heave, and surge spectra. The first 60 seconds 

of pitch, heave, and surge time records used in the subsequent simulations are depicted in figure 

5.20. Associated with figure 5.20 are maximum horizontal and vertical displacement parameters 

of 0.2, justifying the use of the inertia dominated wave force assumption. 

Control simulations follow, and figure 5.21 shows an adaptive sliding pitch controller 

with no disturbance cancellation terms regulating 21UUV pitch angle at 0 degrees in the presence 

of the stochastic wave disturbance. Attempting to partially reproduce the adaptive disturbance 

cancellation results seen in section 5.3.3, seven disturbance cancellation frequencies which span 

the known disturbance spectrum are added in feedforward, and their amplitudes and phase are 

adapted on-line. Figure 5.22 depicts this adaptive controller performance under the same 

conditions as those used with the previous simulation. The improvement in pitch regulation by 

this adaptive controller with disturbance cancellation terms is seen. Improvements for adaptive 

controllers with fewer disturbance cancellation terms, or for lower gain controllers with larger 

values of 4>e, were found to be far less significant. 
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Figure 5.19 Wave Disturbance Spectra. The single-sided spectra above were generated using 

the ITTC recommended surface wave spectrum and the transfer functions for the 21UUV in 

inertia dominated wave forces presented in chapter 2. The dashed lines represent the head sea 

disturbance spectra for the AUV at 0 m/s, while the solid curves account for the shift of the 

spectra due to vehicle forward motion and frequency of encounter with the waves. As a spectrum 

is shifted to the right and its energy is spread over a larger range of frequencies, its peak 

amplitude drops, but the areas under the unshifted and shifted spectra remain equal. 
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Figure 5.20 Possible Time Realizations for Pitch, Heave, and Surge Disturbance. These 

disturbances were generated using the spectra in figure 5.19 and by superimposing 350 sine 

components as described in section 2.1.2. While the phase of each sine wave is random, proper 

relative phase between the sine components of each of the three disturbances (as presented in 

section 3.3.3.1) is preserved. 

125 



pitch angle pitch rate 

BO 
U 

50 

time (sec) 

stern plane angle 

50 100 

time (sec) 

60 
U 

T3 

T3 

■a 
C 

0.01 

a.0.005 
+ 
C <a 
B 

■1-0.005 

-0.01 

s and boundary layer 

Figure 5.21 Adaptive Sliding Pitch Control with Stochastic Disturbance. Here, T = F0, 

1% = 200 and <I>e = 0.001. Pitch angle regulation is good with this high gain controller, with 101 < 

0.2° during the simulation. This controller performance is used to measure against the following 

pitch controller which adds adaptive sine and cosine disturbance cancellation terms in an attempt 

to partially eliminate the effect of the random wave disturbance. 
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Figure 5.22 Adaptive Sliding Pitch Control with Stochastic Disturbance. As in figure 5.21, 

AQ = 200 and Oe =0.001, but here 14 disturbance cancellation terms are added in feedforward 

and adapted on-line in an attempt to partially cancel the stochastic wave disturbance, and T = 

diag[ro, 1001]. The cancellation terms include a sine and cosine each at frequencies of 1.4, 1.5, 

1.6, 1.7, 1.8, 1.9, and 2.0 rad/sec. The coefficients of the 14 disturbance cancellation terms are 

plotted in the upper right. It is seen that steady state is not reached for the 14 coefficients, nor is 

it expected to be reached because exact cancellation of the stochastic disturbance with seven 

sinusoids is not possible. However, pitch amplitude is reduced over the previous simulation as 

101 < 0.1°. The improvement in pitch regulation for adaptive controllers with fewer disturbance 

cancellation terms, or for lower gain controllers with a larger value of Oe, was not found to be 

nearly as pronounced. 
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The simulations demonstrating improvement in pitch regulation by adaptive sliding 

controllers with disturbance cancellation terms seen in the previous monochromatic and random 

disturbance cases each required higher gain controllers than the pitch controller used for depth 

trajectory following. In general, higher gain is less desirable because it makes a controller more 

susceptible to state measurement noise, and is more likely to excite unmodeled or non-ideal 

actuator dynamics. Particularly for the 21UUV at low forward speeds, it is apparent that a 

higher gain pitch controller would sooner cause sternplane saturation as wave severity increased. 

Simulating the 21UUV operating at 5 meters depth in sea state 2 illustrates this point. 

Figure 5.23 depicts the 21UUV adaptive pitch controller (ke = l, Oe = 0.012, and 

r = ro) regulating AUV pitch in the presence of a wave disturbance which simulates that of the 

vehicle operating in sea state 2, head seas, 30 meter deep water and at a depth of 5 meters. All 

three coupled longitudinal plane equations are again simulated so that the coupling effects of 

surge and heave on pitch are present. Figure 5.24 shows the adaptive pitch controller (Ag = 200, 

<De = 0.001 and T = diag|T0, 1001]) with 14 disturbance cancellation terms simulated under the 

same conditions. As predicted, the higher gain causes actuator saturation, and the resulting 

controller performance is poorer than that of the lower gain pitch controller shown in figure 5.23. 
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Figure 5.23    Adaptive Sliding Pitch Control with Stochastic Disturbance.    No feedforward 

cancellation terms are used in this controller, and T = T0, ke = 7 and <E>e = 0.012. The simulated 

disturbance here is on the 5 meter deep 21UUV in sea state 2.  Sternplane action is significantly 

less than in the following simulation which uses a higher gain pitch controller. 
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Figure 5.24 Adaptive Sliding Pitch Control with Stochastic Disturbance. This controller uses 14 

terms with 7 frequencies (1.4, 1.5, 1.6, 1.7, 1.8, 1.9, and 2.0 rad/sec) in an attempt to adapt to 

the stochastic disturbance. Here, T = diag|T0, 1001], ^=200 and Oe = 0.001 Sternplane 

saturation is evident and the resulting pitch performance is much poorer than that depicted in 

figure 5.23 for the lower gain controller. 
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5.3.5 Summary 

The sliding controllers developed in sections 5.1 and 5.2 for 21UUV longitudinal plane 

control were demonstrated here in simulation. Robust sliding control and adaptive sliding control 

techniques were applied to the pitch axis of the AUV, while robust sliding control laws alone 

were used for the depth and forward speed controllers. Development of the robust sliding control 

laws assumed that the hydrodynamic and body coefficients of the dynamics equations were 

bounded by some known, possibly time varying function, whereas the assumption implicit with 

the adaptive sliding control law was that the hydrodynamic and body coefficients remained 

constant. 

21UUV pitch controller performance was shown to directly affect depth trajectory 

following as variations of sliding pitch control were used in the 3 axis, integrated control 

simulation of the 21UUV making a depth change maneuver. The effect of parametric uncertainty 

upon the performance of the pitch controllers was investigated, and the adaptive pitch controller 

was shown to provide good performance, resulting in good depth trajectory following, despite 

almost total hydrodynamic coefficient uncertainty. 

An extension of the adaptive pitch controller was shown to adapt to and cancel a pitch 

disturbance simulating that of a monochromatic wave of known frequency, but of unknown 

magnitude and phase. 

The developments of chapters 2 and 3 were used to generate a coordinated set of 

stochastic pitch, heave, and surge disturbances which the 21UUV might encounter in practice. 

The adaptive controller was again extended to include additional disturbance canceling terms in 

an attempt to achieve better pitch control performance. For the case presented, pitch regulation 

was improved by the addition of disturbance cancellation terms, though a high gain controller 

was needed to demonstrate this effect. 
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A second, more severe set of stochastic pitch, heave, and surge disturbances were then 

generated to demonstrate the effect of sternplane actuator saturation on the higher gain adaptive 

controller. When compared to the lower "bandwidth" pitch controller, the high gain controller 

was sooner to cause sternplane saturation with increasing disturbance severity, which resulted in 

its poorer performance when compared to the lower gain controller. 
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Chapter 6    CONCLUSIONS 

6.1 Summary 
Chapter 1 began with the motivation for this research work, namely to investigate the 

effect of water waves on a slender body, autonomous underwater vehicle operating in a region of 

the water column where inertia dominated wave forces dominate. The purpose of this research is 

not purely academic; operation in coastal waters and sea state 2 by such a vehicle, the NUWC 

21UUV, is contemplated. The research objectives of this work were outlined and are consistent 

with a preliminary study of the problem: to develop a simple model for predicting wave 

disturbances; to perform tests which investigate the validity of the assumptions made in developing 

the model; and to use the model to demonstrate the effect of wave forces on the vehicle when 

controlled by a variation of its proposed controller. 

Chapter 2 used existing linear wave theory, slender body strip theory, and linear time 

invariant systems theory to develop a method to predict the effect of wave disturbances on a 

stationary, slender body underwater vehicle. First, the prediction of monochromatic wave effects 

was addressed. These results were extended using a statistical description of waves and an 

assumption about the superposition of wave forces when operating in an inertia dominated wave 

force regime. Formulae for calculating the magnitude and phase of the transfer function from 

surface water waves to the disturbances on five of the six 21UUV axes were presented. Only the 

disturbance transfer function for the 21UUV roll axis did not lend itself to this method of 
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calculation, while a procedure for predicting surge, heave, sway, pitch and yaw axes disturbance 

transfer functions was shown. 

Having a statistical description of the sea surface, and using LTI system theory with the 

previously developed transfer functions allowed for development of a spectral description of the 

wave disturbances on the AUV. By using an earlier described method to generate a time 

simulation of the sea surface associated with a given sea spectrum, the generation of a simulated 

time record of wave disturbances on the AUV was shown. 

Chapter 3 described all aspects of the experimental tests which were conducted to 

investigate the validity of the transfer function model for wave forces on a stationary slender body 

vehicle. The experimental setup, consisting of a tow tank with motorized sliding carriage, the 

AUV tow body model, force and wave sensors, and data collection equipment were detailed. For a 

1:4.188 scale model of the 21UUV, it was shown that experiments conducted in the wave tank 

could preserve the wavelength to vehicle length ratios expected of the full scale vehicle in sea 

waves. For tests entailing the towing of the 21UUV model under waves, Froude number scaling 

was used and full scale equivalent forward speeds up to 1.5 m/s were investigated. The trials 

conducted during the course of testing were outlined, and they included investigating wave forces 

on the model 21UUV at a variety of model depths, model speeds, wave aspects, wave amplitudes, 

and over a range of wave frequencies. The processing of the raw data collected during the tests 

was also described. 

Presentation of experimental data along with the predicted results followed. Wave force 

and moment magnitude and phase on the AUV model were presented in a transfer function format 

for the tests conducted on the stationary model, and force and moment magnitude were presented 

for wave disturbances on the towed model. 

The stationary model tests largely validated the earlier developed method of predicting 

wave forces and moments on the body, both in magnitude and in phase. A systematic discrepancy 
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in the prediction of the heave force on the model vehicle in head seas and at higher frequencies was 

noted. This discrepancy was seen in both heave force magnitude and phase. The transfer function 

description of forces and moments on the vehicle was supported by the data as it was shown that 

the hydrodynamic forces on the body were linearly related to the wave amplitude. 

The results of the data collected on the towed AUV model showed a deviation from the 

stationary body theory for the surge and heave forces. Towing the model AUV at the speeds 

investigated had minimal effect on the pitch transfer function magnitude. This result supported 

using the "stationary body" method of predicting the pitch disturbance on the forward moving AUV 

in subsequent simulations. 

Chapter 4 presented equations used to describe the motion of the 21UUV in 6 degrees of 

freedom. Coordinate systems, rigid body dynamics, hydrodynamic forces, and 21UUV body 

symmetry were addressed. The wave forces investigated earlier were included in these equations 

by superimposing them in an external disturbance vector. The 6 degree of freedom model was 

simplified to include only motion in the AUV longitudinal plane, resulting in coupled surge, heave, 

and pitch equations for the vehicle. 

Chapter 5 presented a method of applying sliding control techniques to the 21UUV 

longitudinal plane equations developed in the previous chapter. The effects of parametric 

uncertainty and pitch controller adaptation were demonstrated. It was found that even with almost 

no knowledge of AUV hydrodynamic coefficients, an adaptive sliding pitch controller was able to 

provide good pitch control performance throughout a commanded AUV depth change. The same 

control law without the benefit of parameter estimate adaptation proved unstable. This finding 

suggests that in practice, good 21UUV controller performance could still be achieved despite 

numerous in-field AUV configuration changes, and without the benefit of additional hydrodynamic 

coefficient analysis. 
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Pitch control in the presence of wave disturbances was also investigated, and it was shown 

that an adaptive sliding pitch controller could eliminate the effect of a monochromatic pitch 

disturbance of known frequency, but of unknown phase and magnitude. An extension of this idea 

to a stochastic pitch disturbance of known frequency spectra was investigated, and could only be 

shown to provide significant disturbance cancellation improvement for a higher gain controller than 

would normally be used. The negative effect of actuator saturation on pitch control performance 

was shown, supporting the use of a lower "bandwidth" pitch controller when controlling AUV pitch 

in waves. 

6.2 Future Directions 
The use of nonlinear sliding control with slender body underwater vehicles has been shown 

to be effective in practice (Healy and Marco 1992), and is currently being tested for a precursor to 

the 21UUV (Hills and Yoerger 1994). The work presented here concerning wave effects on an 

AUV is preliminary in nature, and the problem of AUV control in the presence of wave 

disturbances begs further study. While a method of calculating the disturbances caused by direct 

head seas and beam seas was presented, the operation of an AUV in waves of arbitrary aspect is of 

general interest. Similarly, computer simulations in this paper were limited to the longitudinal 

plane alone. Full 6 degree of freedom simulations of the 21UUV will be used to investigate the 

coupling effects of motion in the axes ignored in this paper. 

Though simulations can provide preliminary indications concerning the possible 

performance of an AUV's controller in the presence of waves, these simulations cannot realistically 

capture the full range of hydrodynamic effects and actuator and sensor performance found in 

practice. Ultimately, the richest method of studying the effect of wave disturbances on the 21UUV 

will be the full scale operation of the vehicle beneath the waves. 

136 



Bibliography 

15th ITTC. Recommendations of the Seakeeping Committee, Proceedings of the 15th 

International Towing Tank Conference, Vol. II, pp. 219-220, 1978. 

Berteaux, H. O. Coastal and Oceanic Buoy Engineering, published by the author, 1991. 

Chryssostomidis, C. and Oakes, M. C. Selection of Wave Spectra for Use in Ship Design, 

Proceedings of the International Symposium on Ocean Wave Measurement and Analysis, Vol. II, 

pp. 217-234, 1974. 

Dean, R. G., and Dalrymple, R. A. Water Wave Mechanics for Engineers and Scientists, 

Prentice Hall, Inc., Englewood Cliffs, NJ, 1984. 

Faltinsen, O. M. Sea Loads on Ships and Offshore Structures, Cambridge University Press, NY, 

1990. 

Fossen, T. I. Guidance and Control of Ocean Vehicles, John Wiley & Sons, Ltd., NY, 1994. 

Healey, A. J., and Marco D. B. Slow Speed Flight Control of Autonomous Underwater Vehicles: 

Experimental Results with NPS AUV II, Proceedings of the Second (1991) International 

Offshore and Polar Engineering Conference, pp. 523- 532, 1991. 

Hills, S. J., and Yoerger, D. R. A Nonlinear Sliding Mode Autopilot for Unmanned Undersea 

Vehicles, to be published in Oceans '94 Proceedings, 1994. 

Hoerner, S. F. Fluid Dynamic Drag, edited by the author, Midland Park, NJ, 1965. 

137 



Hoerner, S. F. Fluid Dynamic Lift, edited by the author, Brick Town, N. J. 1975. 

MATLAB Users Guide, The MathWorks, Inc., Natick, MA, 1992. 

Morison, J. R., O'Brien, M. P., Johnson J. W., and Schaff, S. A. The Force Exerted by Surface 

Waves on Piles, Petroleum Transactions, AIME, Vol. 189, 1950. 

Narendra, K. S. and Annaswamy, A. M. Stable Adaptive Systems, Prentice Hall, Englewood 

Cliffs, NJ, 1989. 

Newman, J. N. Marine Hydrodynamics, MIT Press, Cambridge, MA, 1977. 

Papoulis, A. Probability, Random Variables, and Stochastic Processes, McGraw-Hill, NY, 

1984. 

SNAME (1950). The Society of Naval Architects and Marine Engineers. Nomenclature for 

Treating the Motion of a Submerged Body Through a Fluid, Technical and Research Bulletin No 

1-5. 

Sagatun, S. J., and Fossen, T. I. Lagrangian Formulation of Underwater Vehicles' Dynamics, 

Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 1029- 

1034, 1991. 

Slotine, J.-J. E, and Coetsee, J. A. Adaptive Sliding Controller Synthesis for Non-linear Systems, 

Int. J. Control., Vol. 43, No. 6, 1986. 

Slotine, J.-J. E., and Li, W. Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, NJ, 

1991. 

St. Denis, M. On Wind Generated Waves, Topics in Ocean Engineering, Gulf Publishing 

Company, Houston, TX, 1969. 

Woods, L. C. The theory of subsonic plane flow, Cambridge University Press, NY, 1961. 

138 



Yoerger, D. R., and Slotine J.-J. E.     Robust Trajectory Control of Underwater Vehicles, IEEE 

Journal of Oceanic Engineering, Vol. 10, No. 4, 1985. 

Yoerger, D. R., Neuman, J. B., and Slotine, J.-J. E. Supervisory Control Systems for the JASON 

ROV, IEEE Journal of Oceanic Engineering, Vol. 11, No. 3, 1986. 

139 



Author's Biographical Note 

LCDR Christopher J. Willy, USNR, completed his undergraduate studies at the U. S. 

Naval Academy, receiving a Bachelor of Science degree in Systems Engineering and a commission 

in the U. S. Navy in 1981. He finished training as a naval flight officer in 1983, and was first 

assigned to Patrol Squadron Forty-Nine (VP-49). He has since served at Air Test and Evaluation 

Squadron One (VX-1), the Reserve Antisubmarine Warfare Training Center, and Patrol Squadron 

Sixty-Nine (VP-69) prior to his present assignment in the Massachusetts Institute of Technology 

and Woods Hole Oceanographic Institution Joint Program in Oceanographic Engineering. 

LCDR Willy's next assignment is with Patrol Squadron Sixty-Six (VP-66) in Willow 

Grove, Pennsylvania. 

140 



Appendix 
Below is contained the derivation of a robust adaptive sliding control law as applied to the 

21UUV pitch equation. This derivation is adapted from (Slotine and Li 1991). The resulting 

control and parameter adaptation laws are presented in section 5.2.1. 

afi + a2wQ + a3uQ + a4wu + a5 sin 6 + a6 cosQ + d^t) = —u 8S 

SQ — 8 + Ago — 8 — 8f 6r — 6^ — A,g8 6 — 8 — 8^ 

v = ±alSQA+±äTr-lä>o       a,>o        r~' = r~T>o 

V = seAalse+arr~1ä ä = ä-a 

V = sQA(-Ya-d1(t)- A-) + ärr-]ä |^(0L <D 

Y = 6r    w6    uQ    wu    sin 8    cos8 

a = [a,    «2    a,    a4    a5    a6] 

-M 85 = Yä - ^5e        =>       5V = w   (&ese - Yä) k$ > 0 

V = 56A(Yä-J1(0-foe) + ärr"1ä a = ä 

v = (ärr-1+5eAY)ä-5e4^(0-^AVe     =>     a = -rrr5, 9 A 

V ~ ~s&Ach (0 ~ ^e^epeAl— Ve A 

V&e^       =>       V<-VeA<0 
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It is assumed that w and u are bounded. 

V>0       V<0       =>       V is bounded        =>       se, ä are bounded 

5e bounded     =>    0,6 are bounded, and if 0^, 8^ are bounded (assumed)   =>   6,6 are bounded 

ä bounded    =>   ä bounded 

for u > 0, 8V is bounded => 6 is bounded, and if 6^ is bounded (assumed) => ie is bounded 

=> V  is bounded => V—>0  by Barbalat's Lemma => sQA—>0 
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